等差數(shù)列{an}中,a3=4,a8=9,其前n項(xiàng)的和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式an及其前n項(xiàng)和Sn;
(2)設(shè)bn=2an,求數(shù)列{bn}的通項(xiàng)公式bn及其前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由等比數(shù)列的通項(xiàng)公式,利用已知條件,列出方程組,分別求出等差數(shù)列的首項(xiàng)和公差,由此能求出數(shù)列{an}的通項(xiàng)公式an及其前n項(xiàng)和Sn
(2)利用{an}的通項(xiàng)公式,由bn=2an,能求出數(shù)列{bn}的通項(xiàng)公式bn及其前n項(xiàng)和Tn
解答: 解:(1)∵等差數(shù)列{an}中,a3=4,a8=9,
a1+2d=4
a1+7d=9

解得
a1=2
d=1
,
∴an=2+(n-1)=n+1,
Sn=2n+
n(n-1)
2
×1
=
n2+3n
2

(2)∵an=n+1,
bn=2an=2n+1,
bn+1
bn
=2,
bn=4•2n-1=2n+1,
Tn=
4(1-2n)
1-2
=2n+2-4.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和求和公式,等比數(shù)列的通項(xiàng)公式和求和公式,考查基本量思想和運(yùn)算求解能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線3x-
3
y+1=0的傾斜角是( 。
A、30°B、60°
C、45°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

注:此題選A題考生做①②小題,選B題考生做①②③小題.
已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0.
①求證:對(duì)任意m∈R,直線l與圓C總有兩個(gè)不同的交點(diǎn);
②當(dāng)m=1時(shí),直線l與圓C交于M、N兩點(diǎn),求弦長(zhǎng)|MN|;
③設(shè)l與圓C交于A、B兩點(diǎn),若|AB|=
17
,求l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),B(0,2),C(cosα,sinα).
(1)若|
AC
|=|
BC
|
,且α∈(0,π),求角α的值;
(2)若
AC
BC
=
1
3
,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,x,x2-x},B={1,2,x},若集合A與集合B相等,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-x
(1)當(dāng)a=1時(shí),求f(x)的極值并寫出極值點(diǎn).
(2)若f(x)在(-∞,+∞)上是減函數(shù),求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某省每年損失耕地20萬畝,每畝耕地價(jià)值24000元,為了減少耕地?fù)p失,政府決定按耕地價(jià)格的t%征收耕地占用稅,這樣每年的耕地?fù)p失可減少
5
2
t萬畝,為了既可減少耕地的損失又可保證此項(xiàng)稅收一年不少于9000萬元,則t應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,O為底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中點(diǎn)
(1)求證:直線MO∥平面PAB;
(2)求證:平面PCD⊥平面ABM.
(3)求直線PB與平面ABM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1-x2(x≤1)
2x(x>1)
,則f[
1
f(log24)
]=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案