14.已知數(shù)列{an}為等差數(shù)列,若$\frac{{a}_{13}}{{a}_{12}}$<-1,且它們的前n項(xiàng)和Sn有最大值,則使得Sn>0的n的最大值為( 。
A.21B.22C.23D.24

分析 由$\frac{{a}_{13}}{{a}_{12}}$<-1,可得$\frac{{a}_{13}+{a}_{12}}{{a}_{12}}<0$,由它們的前n項(xiàng)和Sn有最大可得a12>0,a13+a12<0,a13<0從而有a1+a23=2a12>0,a1+a24=a13+a12<0,從而可求滿足條件的n的值.

解答 解:因?yàn)?\frac{{a}_{13}}{{a}_{12}}$<-1,可得$\frac{{a}_{13}+{a}_{12}}{{a}_{12}}<0$,由它們的前n項(xiàng)和Sn有最大值,可得數(shù)列的d<0
∴a12>0,a13+a12<0,a13<0
∴a1+a23=2a12>0,a1+a24=a13+a12<0,
使得Sn>0的n的最大值n=23
故選:C.

點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì)在求解和的最值中應(yīng)用,解題的關(guān)鍵是由已知及它們的前n項(xiàng)和Sn有最大,推出數(shù)列的正項(xiàng)是解決本題的關(guān)鍵點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.對(duì)任意函數(shù)f(x),x∈D,可按如圖構(gòu)造一個(gè)數(shù)列發(fā)生器,數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn}.
(1)若定義函數(shù)f(x)=$\frac{4x-2}{x+1}$,且輸入x0=$\frac{49}{65}$,請(qǐng)寫出數(shù)列{xn}的所有項(xiàng);
(2)若定義函數(shù)f(x)=2x+3,且輸入x0=-1,求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知△ABC中,P為邊BC上的一點(diǎn),且$\overrightarrow{AP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),則△ABC的形狀為(  )
A.等邊三角形B.等腰直角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.直線y=kx+1與雙曲線x2-4y2=16只有一個(gè)公共點(diǎn),則k的取值范圍是{±1,±$\frac{\sqrt{30}}{12}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2+(2m-3)x+lnx(m∈R).
(1)討論函數(shù)f(x)在定義域上的單調(diào)性;
(2)若對(duì)任意的x∈(1,2),總有f(x)<-2,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)z滿足(1+i)z=2,則z的虛部為( 。
A.-1B.-iC.iD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.周期為4的R上的奇函數(shù)f(x)在(0,2)上的解析式為f(x)=$\left\{\begin{array}{l}{x+1,0<x≤1}\\{lo{g}_{2}x+1,1<x<2}\end{array}\right.$,則f(2014)+f(2015)等于( 。
A.-3B.-2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知復(fù)數(shù)z滿足($\sqrt{3}$+3i)z=3i,則z等于$\frac{3}{4}+\frac{{\sqrt{3}}}{4}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)a,b∈R,則“a+b>2且ab>1”是“a>1且b>1”的必要不充分條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案