如圖,CB是⊙O的直徑,AP是⊙O的切線,AP與CB的延長線交于點P,A為切點.若PA=10,PB=5,∠BAC的平分線AE與BC和⊙O分別交于點D、E,則AD•DE的值為( )

A.50
B.
C.96
D.100
【答案】分析:先根據(jù)∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,進而求出 =,再根據(jù)切割線定理得到PA2=PB•PC;結(jié)合前面求出的結(jié)論以及角平分線定理求出CD,DB.再結(jié)合條件得到△CDE∽△ADB,進而求出結(jié)果.
解答:解:連接CE,∵PA為⊙O的切線,
∴∠PAB=∠ACP,…(1分)
又∠P公用,∴△PAB∽△PCA.…(2分)
=,…(3分)
∵PA為⊙O的切線,PBC是過點O的割線,
∴PA2=PB•PC.…(5分)
又∵PA=10,PB=5,∴PC=20,BC=15.…(6分)
又知,=,
∵BC是⊙O的直徑,
∴∠CAB=90°.
∴AC2+AB2=BC2=225,
∴AC=6 ,AB=3 ,CD=10,DB=5…(7分)
連接CE,則∠ABC=∠E,…(8分)
又∠CDE=∠ADB,
∴△CDE∽△ADB,
…(9分)
∴AD•DE=DB•CD=5×10=50.…(10分)
故選A.
點評:本題主要考查與圓有關(guān)的比例線段、相似三角形的判定及切線性質(zhì)的應(yīng)用.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CB是⊙O的直徑,AP是⊙O的切線,AP與CB的延長線交于點P,A為切點,若PA=10,PB=5,∠BAC的平分線AE與BC和⊙O分別交于點D、E,則AD•AE的值為
90
90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CB是⊙O的直徑,AP是⊙O的切線,AP與CB的延長線交于點P,A為切點.若PA=10,PB=5,∠BAC的平分線AE與BC和⊙O分別交于點D、E,求AD•AE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CB是⊙O的直徑,AP是⊙O的切線,AP與CB的延長線交于點P,A為切點.若PA=10,PB=5,∠BAC的平分線AE與BC和⊙O分別交于點D、E,則AD•DE的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)幾何證明選講:如圖,CB是⊙O的直徑,AP是⊙O的切線,A為切點,AP與CB的延長線交于點P,若PA=8,PB=4,求AC的長度.
(2)坐標(biāo)系與參數(shù)方程:在極坐標(biāo)系Ox中,已知曲線C1:ρcos(θ+
π
4
)
=
2
2
與曲線C2;ρ=1相交于A、B兩點,求線段AB的長度.
(3)不等式選講:解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

同步練習(xí)冊答案