(本題滿分12分)已知函數(shù)
若函數(shù)在區(qū)間(a,a+)上存在極值,其中a>0,求實(shí)數(shù)a的取值范圍;
如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍。
(1)
(2)

試題分析:解:(1)  
列表

(0,1)
1


+
0
-


極大值

由題意
(2)由題意對(duì)于恒成立
 
再令   當(dāng)時(shí),
在區(qū)間單調(diào)遞增,所以
所以,當(dāng)時(shí), 
所以,在區(qū)間單調(diào)遞增,

所以,    
即當(dāng)時(shí),滿足題意。
點(diǎn)評(píng):結(jié)合導(dǎo)數(shù)的思想來(lái)分析函數(shù)的極值和不等式恒成立問(wèn)題是高考的熱點(diǎn)問(wèn)題,要給予關(guān)注,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

是定義在上的奇函數(shù),且當(dāng),設(shè),給出三個(gè)條件:①,③.其中可以推出的條件共有          個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)是實(shí)數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對(duì)于任意,上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對(duì)任意 恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

當(dāng)函數(shù)(>0)取最小值時(shí)相應(yīng)的的值等于     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)某工廠有214名工人, 現(xiàn)要生產(chǎn)1500件產(chǎn)品, 每件產(chǎn)品由3個(gè)A型零件與1個(gè)B型零件配套組成, 每個(gè)工人加工5個(gè)A型零件與3個(gè)B型零件所需時(shí)間相同. 現(xiàn)將全部工人分為兩組, 分別加工一種零件, 同時(shí)開(kāi)始加工. 設(shè)加工A型零件的工人有x人, 在單位時(shí)間內(nèi)每人加工A型零件5k個(gè)(k∈N*), 加工完A型零件所需時(shí)間為g(x), 加工完B型零件所需時(shí)間為h (x).
 (Ⅰ) 試比較大小, 并寫(xiě)出完成總?cè)蝿?wù)的時(shí)間的表達(dá)式;
(Ⅱ) 怎樣分組才能使完成任務(wù)所需時(shí)間最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若定義在R上的偶函數(shù)滿足,且當(dāng)時(shí),則方程的解個(gè)數(shù)是                   (   )
A.0個(gè)B.2個(gè)C.4個(gè)D.6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)中,常數(shù)那么的解集為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù),其中.(1) 討論函數(shù)的單調(diào)性,并求出的極值;(2) 若對(duì)于任意,都存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案