如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB=BC=CA=2PA,D、E分別是棱AB,AC上的動點,且AD=CE,連接DE,當三棱錐P-ADE體積最大時,平面PDE和平面PBC所成二面角的余弦值為( 。
分析:求出三棱錐P-ADE體積最大時,D、E分別是棱AB,AC上的中點,作出平面PDE和平面PBC所成二面角,利用余弦定理,即可求得結(jié)論.
解答:解:由題意,設(shè)AB=BC=CA=2PA=2,AD=CE=t,則三棱錐P-ADE體積為
1
3
×
1
2
×t×(2-t)×
3
2
=
3
12
(-t2+2t)

=-
3
12
(t-1)2+
3
12

∴t=1時,三棱錐P-ADE體積最大,此時,D、E分別是棱AB,AC上的中點
取DE中點M,BC中點N,連接PM,MN,PN,則
∵DE∥BC,PM⊥DE,PN⊥BC
∴∠MPN為平面PDE和平面PBC所成二面角,
在△MNP中,PM=
7
2
,MN=
3
2
,PN=2,
∴cos∠MPN=
PM2+PN2-MN2
2PM•PN
=
7
4
+4-
3
4
2•
7
2
•2
=
5
7
14

故選D.
點評:本題考查三棱錐體積的計算,考查面面角,考查余弦定理的運用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側(cè)面一圈回到點A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習冊答案