如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面的圓周上,AFDEF是垂足.

(1)求證:AFDB;

(2)如果圓柱與三棱錐DABE的體積的比等于3π,求直線DE與平面ABCD所成的角.

 

答案:
解析:

(1)證明:根據(jù)圓柱性質(zhì),DA⊥平面ABE

EB平面ABE,

DAEB

AB是圓柱底面的直徑,點(diǎn)E在圓周上,

AEEB,又AEAD=A

故得EB⊥平面DAE

AF平面DAE,

EBAF

AFDE,且EBDE=E,

故得AF⊥平面DEB

DB平面DEB

AFDB

 (2) 解:過點(diǎn)EEHAB,H是垂足,連結(jié)DH.根據(jù)圓柱性質(zhì),平面ABCD⊥平面ABE,AB是交線.且EH平面ABE,所以EH⊥平面ABCD

DH平面ABCD,所以DHED在平面ABCD上的射影,從而

EDHDE與平面ABCD所成的角.

設(shè)圓柱的底面半徑為R,則DA=AB=2R,于是

V圓柱=2πR 3

V圓柱VDABE=3π,得EH=R,可知H是圓柱底面的圓心,AH=R,

DH=

∴∠EDH=arcctan=arcctan,

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面圓周上,點(diǎn)F在DE上,且AF⊥DE,若圓柱的側(cè)面積與△ABE的面積之比等于4π. 
(Ⅰ)求證:AF⊥BD;
(Ⅱ)求二面角A-BD-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面圓周上,點(diǎn)FDE上,且AFDE,若圓柱的側(cè)面積與△ABE的面積之比等于4π。

(Ⅰ)求證:AFBD

(Ⅱ)求二面角ABDE的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面圓周上,點(diǎn)F在DE上,且AF⊥DE,若圓柱的側(cè)面積與△ABE的面積之比等于4π.

(Ⅰ)求證:AF⊥BD;(Ⅱ)求二面角A―BD―E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖南省長(zhǎng)沙市瀏陽一中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面圓周上,點(diǎn)F在DE上,且AF⊥DE,若圓柱的側(cè)面積與△ABE的面積之比等于4π. 
(Ⅰ)求證:AF⊥BD;
(Ⅱ)求二面角A-BD-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年瀏陽一中高考仿真模擬考試(理) 題型:解答題

 如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面圓周上,點(diǎn)F在DE上,且AF⊥DE,若圓柱的側(cè)面積與△ABE的面積之比等于4π. 007

(Ⅰ)求證:AF⊥BD;

(Ⅱ)求二面角A―BD―E的正弦值.

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案