設(shè)z=x+y,其中實(shí)數(shù)x,y滿足
x+2y≥0
x-y≤0
0≤y≤6
,則z的最大值為( 。
A、6B、12C、0D、-6
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)A時(shí),直線y=-x+z的截距最大,
此時(shí)z最大.
y=6
x-y=0
,解得
x=6
y=6
,即A(6,6),
代入目標(biāo)函數(shù)z=x+y得z=6+6=12.
即目標(biāo)函數(shù)z=x+y的最大值為12.
故選:B.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=
π
2
0
(-cosx)dx,則二項(xiàng)式(x2+
a
x
5的展開式中x的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,a>1,b>1,若ax=by=3,a+b=6
3
,則
1
x
+
1
y
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1中,點(diǎn)P是直線BC1的動(dòng)點(diǎn),則下列四個(gè)命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成角的大小不變;
③二面角P-AD1-C的大小不變:
其中正確的命題有
 
.(把所有正確命題的編號(hào)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則幾何體的體積是(  )
A、
5
6
B、
10
3
C、
5
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,BC=3,AC=
13
,B=
π
3
,則△ABC的面積是( 。
A、3
3
B、6
13
C、
3
3
2
D、
3
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M={(x,y)|x,y∈Z,ln2+ln(4-x)(4+y)≥2ln(y-x+6),則集合M的元素個(gè)數(shù)為( 。
A、13B、12C、11D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知log2(x+2)=2,則x等于(  )
A、-1B、0C、2D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R||x-1|≤2},B={x∈R|x2≤4},則A∩B=( 。
A、(-1,2)
B、[-1,2]
C、(0,2]
D、[-2,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案