【題目】已知函數(shù), .

(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;

(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(Ⅲ)設(shè)斜率為的直線與函數(shù)的圖象交于, 兩點(diǎn),其中,求證: .

【答案】(1)(2)見解析

【解析】試題分析:(1)首先求得切線斜率 ,且,據(jù)此由點(diǎn)斜式寫出切線方程.

(2)由令,得, .分類討論: , ,三種情況即可得到函數(shù)的單調(diào)區(qū)間;

(3)經(jīng)分析可知,證明原問題只需證明,構(gòu)造函數(shù),可證得,即得證.

試題解析:

(Ⅰ)當(dāng)時(shí), ),

),.

,所以切線方程為,即.

(Ⅱ),令,得 .

①當(dāng),即時(shí),令,得;令,得,

所以當(dāng)時(shí), 單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

②當(dāng),即時(shí),令,得,

所以當(dāng), 單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

③當(dāng),即時(shí), ,

易知單調(diào)增區(qū)間為 .

(Ⅲ)根據(jù)題意, .(以下用分析法證明)

要證,只要證,

只要證

,則只需證: ,令,

,所以上遞增,

,即,同理可證:

綜上, ,即得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小正周期為π.
(1)求 的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間及其圖象的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是三個(gè)內(nèi)角的對(duì)邊.

(1),求的值;

(2),試判斷的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 的中點(diǎn).

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省電視臺(tái)為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:

其中一個(gè)數(shù)字被污損.

(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.

(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對(duì)成語知識(shí)的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語知識(shí)的時(shí)間(單位:小時(shí))與年齡(單位:歲),并制作了對(duì)照表(如下表所示)

年齡(歲)

20

30

40

50

周均學(xué)習(xí)成語知識(shí)時(shí)間(小時(shí))

2.5

3

4

4.5

由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為55歲觀眾周均學(xué)習(xí)成語知識(shí)時(shí)間.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,0<β< ,cos( +α)=﹣ ,sin( +β)= ,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,

(1)證明: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案