精英家教網 > 高中數學 > 題目詳情
(2013•浙江)如圖F1、F2是橢圓C1
x2
4
+y2=1與雙曲線C2的公共焦點A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是( 。
分析:不妨設|AF1|=x,|AF2|=y,依題意
x+y=4
x2+y2=12
,解此方程組可求得x,y的值,利用雙曲線的定義及性質即可求得C2的離心率.
解答:解:設|AF1|=x,|AF2|=y,∵點A為橢圓C1
x2
4
+y2=1上的點,
∴2a=4,b=1,c=
3
;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四邊形AF1BF2為矩形,
|AF1|2+|AF2|2=|F1F2|2,即x2+y2=(2c)2=(2
3
)
2
=12,②
由①②得:
x+y=4
x2+y2=12
,解得x=2-
2
,y=2+
2
,設雙曲線C2的實軸長為2a,焦距為2c,
則2a=|AF2|-|AF1|=y-x=2
2
,2c=2
22-12
=2
3
,
∴雙曲線C2的離心率e=
c
a
=
3
2
=
6
2

故選D.
點評:本題考查橢圓與雙曲線的簡單性質,求得|AF1|與|AF2|是關鍵,考查分析與運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•浙江模擬)如圖,函數y=f(x)的圖象為折線ABC,設f1(x)=f(x),fn+1 (x)=f[fn(x)],n∈N*,則函數y=f4(x)的圖象為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江)如圖,在四面體A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ=3QC.
(1)證明:PQ∥平面BCD;
(2)若二面角C-BM-D的大小為60°,求∠BDC的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江)如圖,點P(0,-1)是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的一個頂點,C1的長軸是圓C2x2+y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l(wèi)1交圓C2于兩點,l2交橢圓C1于另一點D
(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江)如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=
7
,PA=
3
,∠ABC=120°,G為線段PC上的點.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若G是PC的中點,求DG與PAC所成的角的正切值;
(Ⅲ)若G滿足PC⊥面BGD,求
PG
GC
 的值.

查看答案和解析>>

同步練習冊答案