已知實數(shù)R滿足
x-2y≤0
x+y-3≥0
0≤y≤2
,則點(x,y)所圍成平面區(qū)域的面積為( 。
A、
1
2
B、1
C、
3
2
D、2
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,根據(jù)平面區(qū)域的圖象即可得到結(jié)論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
y=2
x-2y=0
解得
x=4
y=2
,即B(4,2),
y=2
x+y-3=0
,解得
x=1
y=2
,即A(1,2),
x-2y=0
x+y-3=0
,解得
x=2
y=1
,即C(2,1),
則△ABC的面積S=
1
2
×(4-2)×(2-1)=
1
2
×2=1
,
故選:B
點評:本題主要考查三角形面積的計算,作出不等式組對應的平面區(qū)域是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知如圖所示的程序框圖,當輸入n=99時,輸出S的值( 。
A、
99
100
B、
49
50
C、
97
100
D、
24
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用定義證明:f(x)=x2+1在(0,+∞)為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

香港違法“占中”行動對香港的經(jīng)濟、政治、社會及民生造成重大損失,據(jù)香港科技大學經(jīng)濟系教授雷鼎鳴測算,僅香港的“占中”行動開始后一個多月的時間,保守估計造成經(jīng)濟損失3500億港元,相等于平均每名港人承受了5萬港元的損失,為了挽回經(jīng)濟損失,某廠家擬在新年舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當促銷費用為x萬元時,銷售量t萬件滿足t=5-
2
x+1
(其中0≤x≤a2-3a+3,a為正常數(shù)).現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本(10+2t)萬元(不含促銷費用),產(chǎn)品的銷售價格定為(4+
20
t
)萬元/萬件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b是不重合的兩條直線,α、β,γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β; 
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b; 
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確的是( 。
A、①②B、①③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求實軸長為6,漸近線方程為y=±
3
2
x的雙曲線的標準方程.
(2)已知橢圓方程為
x2
4
+
y2
3
=1,點P在橢圓上,且|PF1|=
5
2
,求cos∠F1PF2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程
3
sinx+cosx=a在[0,π]上有兩個不同的實數(shù)解,則a的取值范圍為
 
_.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校共有高一、高二、高三學生共有1290人,其中高一480人,高二比高三多30人,為了解該校學生健康狀態(tài),現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有高一學生96人,則該樣本中的高三學生人數(shù)為( 。
A、84B、78C、81D、96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
(1)
(a
2
3
b-1)
-
1
2
a-
1
2
b
1
3
 6
a•b5

(2)求值:
1
5
(lg32+log416+6lg
1
2
)+
1
5
lg
1
5

查看答案和解析>>

同步練習冊答案