【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x)(萬
元),若年產(chǎn)量不足80千件,C(x)的圖象是如圖的拋物線,此時(shí)C(x)<0的解集為(﹣30,0),且C(x)的最小值是﹣75,若年產(chǎn)量不小于80千件,C(x)=51x+ ﹣1450,每千件商品售價(jià)為50萬元,通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤(rùn)L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

【答案】
(1)解:∵每件商品售價(jià)為0.005萬元,

∴x千件商品銷售額為0.005×1000x萬元,

①當(dāng)0<x<80時(shí),根據(jù)年利潤(rùn)=銷售收入﹣成本,

∴L(x)=(0.05×1000x)﹣ x2﹣10x﹣250=﹣ x2+40x﹣250;

②當(dāng)x≥80時(shí),根據(jù)年利潤(rùn)=銷售收入﹣成本,

∴L(x)=(0.05×1000x)﹣51x﹣ +1450﹣250=1200﹣(x+ ).

綜合①②可得,


(2)解:由(1)可知,

①當(dāng)0<x<80時(shí),L(x)=﹣ x2+40x﹣250=﹣ (x﹣60)2+950

∴當(dāng)x=60時(shí),L(x)取得最大值L(60)=950萬元;

②當(dāng)x≥80時(shí),L(x)=1200﹣(x+ )≤1200﹣2 =1200﹣200=1000,

當(dāng)且僅當(dāng),即x=100時(shí),L(x)取得最大值L(100)=1000萬元.

綜合①②,由于950<1000,

∴當(dāng)產(chǎn)量為10萬件時(shí),該廠在這一商品中所獲利潤(rùn)最大,最大利潤(rùn)為1000萬元


【解析】(1)分兩種情況進(jìn)行研究,當(dāng)0<x<80時(shí),當(dāng)x≥80時(shí),根據(jù)年利潤(rùn)=銷售收入﹣成本,列出函數(shù)關(guān)系式,投入成本為,根據(jù)年利潤(rùn)=銷售收入﹣成本,列出函數(shù)關(guān)系式,最后寫成分段函數(shù)的形式,從而得到答案;(2)根據(jù)年利潤(rùn)的解析式,分段研究函數(shù)的最值,當(dāng)0<x<80時(shí),利用二次函數(shù)求最值,當(dāng)x≥80時(shí),利用基本不等式求最值,最后比較兩個(gè)最值,即可得到答案

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象(
A.向右平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向左平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=x2+2 f(x)dx,則 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),分別為具有公共焦點(diǎn)的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿

,則的值為 ( )

A. B. 1 C. 2 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x),y=g(x)的值域均為R,有以下命題:
①若對(duì)于任意x∈R都有f[f(x)]=f(x)成立,則f(x)=x.
②若對(duì)于任意x∈R都有f[f(x)]=x成立,則f(x)=x.
③若存在唯一的實(shí)數(shù)a,使得f[g(a)]=a成立,且對(duì)于任意x∈R都有g(shù)[f(x)]=x2﹣x+1成立,則存在唯一實(shí)數(shù)x0 , 使得g(ax0)=1,f(x0)=a.
④若存在實(shí)數(shù)x0 , y0 , f[g(x0)]=x0 , 且g(x0)=g(y0),則x0=y0
其中是真命題的序號(hào)是 . (寫出所有滿足條件的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在[﹣m,m](m>0)上的函數(shù)f(x)= +xcosx(a>0,a≠1)的最大值和最小值分別是M、N,則M+N=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)物園需要用籬笆圍成兩個(gè)面積均為50 的長(zhǎng)方形熊貓居室,如圖所示,以墻為一邊(墻不需要籬笆),并共用垂直于墻的一條邊,為了保證活動(dòng)空間,垂直于墻的邊長(zhǎng)不小于2m,每個(gè)長(zhǎng)方形平行于墻的邊長(zhǎng)也不小于2m

1)設(shè)所用籬笆的總長(zhǎng)度為l,垂直于墻的邊長(zhǎng)為x.試用解析式將l表示成x的函數(shù),并確定這個(gè)函數(shù)的定義域;

2)怎樣圍才能使得所用籬笆的總長(zhǎng)度最?籬笆的總長(zhǎng)度最小是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=(  )

A. 7 B. 5

C. -5 D. -7

【答案】D

【解析】解得

,∴a1a10a1(1+q9)=-7.D.

點(diǎn)睛:在解決等差、等比數(shù)列的運(yùn)算問題時(shí),有兩個(gè)處理思路,一是利用基本量,將多元問題簡(jiǎn)化為一元問題,雖有一定量的運(yùn)算,但思路簡(jiǎn)潔,目標(biāo)明確;二是利用等差、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應(yīng)有意識(shí)地去應(yīng)用.但在應(yīng)用性質(zhì)時(shí)要注意性質(zhì)的前提條件,有時(shí)需要進(jìn)行適當(dāng)變形. 在解決等差、等比數(shù)列的運(yùn)算問題時(shí),經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運(yùn)算量”的方法.

型】單選題
結(jié)束】
8

【題目】在數(shù)列{ }中,已知,,則等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行新課堂教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和新課堂兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為成績(jī)優(yōu)良”.

分?jǐn)?shù)

[50,59)

[60,69)

[70,79)

[80,89)

[90,100]

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷成績(jī)優(yōu)良與教學(xué)方式是否有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

附: 臨界值表

查看答案和解析>>

同步練習(xí)冊(cè)答案