分析 由已知求出cosθ,進(jìn)一步得到sin2θ與cos2θ的值,展開(kāi)兩角差的正弦得答案.
解答 解:∵sinθ=$\frac{\sqrt{5}}{5}$,θ∈(0,$\frac{π}{2}$),
∴cosθ=$\sqrt{1-si{n}^{2}θ}=\frac{2\sqrt{5}}{5}$,
∴sin(2θ-$\frac{π}{4}$)=$sin2θcos\frac{π}{4}-cos2θsin\frac{π}{4}$
=$\frac{\sqrt{2}}{2}(sin2θ-cos2θ)$=$\frac{\sqrt{2}}{2}(2sinθcosθ-1+2si{n}^{2}θ)$
=$\frac{\sqrt{2}}{2}(2×\frac{\sqrt{5}}{5}×\frac{2\sqrt{5}}{5}-1+2×\frac{1}{5})$=$\frac{\sqrt{2}}{10}$.
故答案為:$\frac{\sqrt{2}}{10}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查倍角公式的應(yīng)用,是基礎(chǔ)的計(jì)算題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5$\sqrt{2}$-4 | B. | $\sqrt{17}$-1 | C. | 6-2$\sqrt{2}$ | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2 | C. | 81 | D. | $\frac{81}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-$\frac{\sqrt{3}π}{6}$ | B. | 1-$\frac{\sqrt{3}π}{12}$ | C. | 1-$\frac{\sqrt{3}π}{9}$ | D. | 1-$\frac{\sqrt{3}π}{18}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com