【題目】如圖,在四棱柱中,平面,,, ,, 為的中點.
(Ⅰ)求CE與DB所成角的余弦值;
(Ⅱ)設點在線段上,且直線與平面所成角的正弦值為,求線段的長度
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)由平面,,可得,,兩兩垂直,建立空間直角坐標系,得出與的坐標,即可求得CE與DB所成角的余弦值;(Ⅱ)利用共線向量基本定理把M的坐標用E和C1的坐標及待求系數(shù)λ表示,求出平面的一個法向量,利用向量求線面角的公式求出直線AM與平面所成角的正弦值,代入求出λ的值,則線段AM的長可求.
(Ⅰ)由平面,,可得,,兩兩垂直,所以分別以,,所在直線為軸,軸,軸,如圖建立空間直角坐標系,
則,,,,.
,,,
(Ⅱ)所以,,,.
設平面的一個法向量為,
由,,得
令,得.
設,其中,
則,
記直線與平面所成角為,
則span>,
解得(舍),或. 所以,
故線段的長度為.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且(a+b+c)(a+b﹣c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC為銳角三角形,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+a|+|x﹣ |(a≠0).
(1)當a=1時,解不等式f(x)<4;
(2)求函數(shù)g(x)=f(x)+f(﹣x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且離心率
(1)求橢圓的標準方程
(2)是否存在過點的直線交橢圓與不同的兩點,且滿足 (其中為坐標原點)。若存在,求出直線的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為4的正三角形, ,分別為的中點,且.
(1)證明:平面ABC;
(2)求二面角的余弦值;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1﹣ ,a∈R.
(1)若函數(shù)g(x)=(x﹣1)f(x)在(0,1)上有且只有一個極值點,求a的范圍;
(2)當a≤﹣1時,證明:f(x)lnx>0對于任意x∈(0,1)∪(1,+∞)成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線C:y2=4x的焦點為F,準線為l,P為拋物線C上一點,且P在第一象限,PM⊥l于點M,線段MF與拋物線C交于點N,若PF的斜率為 ,則 =( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com