設(shè)b>a>0,且P=,Q=,M=,N=,R=,則它們的大小關(guān)系是( )
A.P<Q<M<N<R
B.Q<P<M<N<R
C.P<M<N<Q<R
D.P<Q<M<R<N
【答案】分析:根據(jù)均值不等式的基本知識可知Q為調(diào)和不等式,M為幾何不等式,N為算術(shù)平方數(shù),R為平方平均數(shù),進(jìn)而可判斷出Q,M,N,R的大小,根據(jù)均值不等式的性質(zhì)可知大小,進(jìn)而可判斷出P<Q最后綜合答案可得.
解答:解:Q為調(diào)和不等式,M為幾何不等式,N為算術(shù)平方數(shù),R為平方平均數(shù),
由均值不等式性質(zhì)可知四種平均數(shù)滿足調(diào)和不等式≤幾何不等式≤算術(shù)平方數(shù)≤平方平均數(shù)
∴Q<M<N<R

∴P<Q
故選A.
點(diǎn)評:本題主要考查了均值不等式的應(yīng)用.考查了考生對均值不等式的基本公式和變形公式的把握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b>a>0,且P=
2
1
a2
+
1
b2
,Q=
2
1
a
+
1
b
,M=
ab
,N=
a+b
2
,R=
a2+b2
2
,則它們的大小關(guān)系是( 。
A、P<Q<M<N<R
B、Q<P<M<N<R
C、P<M<N<Q<R
D、P<Q<M<R<N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)b>a>0,且P=
2
1
a2
+
1
b2
,Q=
2
1
a
+
1
b
,M=
ab
,N=
a+b
2
,R=
a2+b2
2
,則它們的大小關(guān)系是( 。
A.P<Q<M<N<RB.Q<P<M<N<RC.P<M<N<Q<RD.P<Q<M<R<N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)b>a>0,且P=
2
1
a2
+
1
b2
,Q=
2
1
a
+
1
b
,M=
ab
,N=
a+b
2
,R=
a2+b2
2
,則它們的大小關(guān)系是( 。
A.P<Q<M<N<RB.Q<P<M<N<RC.P<M<N<Q<RD.P<Q<M<R<N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省吉林一中高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)b>a>0,且P=,Q=,M=,N=,R=,則它們的大小關(guān)系是( )
A.P<Q<M<N<R
B.Q<P<M<N<R
C.P<M<N<Q<R
D.P<Q<M<R<N

查看答案和解析>>

同步練習(xí)冊答案