過橢圓
x2
4
+y2=1
的一個焦點F1的直線與橢圓交于A、B兩點,則A、B與橢圓的另一焦點F2構(gòu)成△ABF2,那么△ABF2的周長是( 。
A、2B、4C、8D、10
分析:把橢圓的方程化為標準方程,求出a的值,由△ABF2的周長是 (|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a 求出結(jié)果.
解答:解:∵橢圓
x2
4
+y2=1

∴a=2,b=1,
故△ABF2的周長是 (|AF1|+|AF2|)+(|BF1|+|BF2|)
=2a+2a=4a=8,
故選:C.
點評:本題考查橢圓的定義、標準方程,以及簡單性質(zhì)的應用,利用橢圓的定義是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

過橢圓
x2
4
+y2=1
的右焦點,且斜率為1的直線l與橢圓
x2
4
+y2=1
相交于A,B兩點,則弦長|AB|=
8
5
8
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知斜率為1的直線過橢圓
x2
4
+y2=1
的右焦點,交橢圓于A、B兩點,則弦AB的長為
8
5
8
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過橢圓
x2
4
+y2=1
的左焦點作互相垂直的兩條直線,分別交橢圓于A、B、C、D四點,則四邊形ABCD面積的最小值為( 。
A、2
B、
34
25
C、
33
25
D、
32
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知斜率為1的直線l過橢圓
x24
+y2=1
的右焦點F2
(1)求直線l的方程;
(2)若l與橢圓交于點A、B 兩點,F(xiàn)1為橢圓左焦點,求SF1AB

查看答案和解析>>

同步練習冊答案