3.如圖,已知AB,ACD分別為圓的一條切線和一條割線,M,N為圓上兩點(diǎn),DM延長線與CN延長線交于點(diǎn)E.
(Ⅰ)若EN:ED=1:4,求MN:CD的值;
(Ⅱ)若MN∥AE,求證AE=AB.

分析 (Ⅰ)證明△ENM∽△EDC,利用EN:ED=1:4,求可MN:CD的值;
(Ⅱ)若MN∥AE,證明△AEC∽△ADE,可得AE2=AC•AD,利用切割線定理可得AB2=AC•AD,即可證明AE=AB.

解答 解:(Ⅰ)由已知C,M,N,D四點(diǎn)共圓,可得∠ENM=∠EDC,
所以△ENM∽△EDC,
所以MN:CD=EN:ED=1:4.…(5分)
(Ⅱ)已知∠ENM=∠EDC,而MN∥AE,故∠ENM=∠AEC,
所以∠EDC=∠AEC,
所以△AEC∽△ADE,所以$\frac{AE}{AD}=\frac{AC}{AE}$,即AE2=AC•AD,
而AB,ACD分別為圓的一條切線和一條割線,
所以AB2=AC•AD,因此AE=AB.…(10分)

點(diǎn)評(píng) 本題考查三角形相似的判定與性質(zhì),考查切割線定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定義在R上的函數(shù)f(x)滿足f(1)=4,f′(x)<2,則f(x3)>2x3+2的解集是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四面體PABC中,平面PBC⊥平面ABC,△ABC為等腰直角三角形,且∠C=90°,PB=PC,點(diǎn)E,F(xiàn),G,H分別是線段AB,BP,BC,PA的中點(diǎn),點(diǎn)M,N分別是EF,GH的中點(diǎn).
(Ⅰ)求證:MN∥平面ABC;
(Ⅱ)若PB=BC,求二面角P-EF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,直線ED與圓相切于點(diǎn)D,且平行于弦BC,連接EC并延長,交圓于點(diǎn)A,弦BC和AD相交于點(diǎn)F.
(I)求證:AB•FC=AC•FB;
(Ⅱ)若D、E、C、F四點(diǎn)共圓,且∠ABC=∠CAB,求∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,△BCD內(nèi)接于⊙O,過B作⊙O的切線AB,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,且DB⊥BE.求證:DB=DC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,過點(diǎn)P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,且AE∥CD.
(Ⅰ)證明:P、B、F、A四點(diǎn)共圓;
(Ⅱ)若四邊形PBFA的外接圓的半徑為$\sqrt{13}$,且PC=CF=FD=3,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知變換T:$[\begin{array}{l}{x}\\{y}\end{array}]$→$[\begin{array}{l}{{x}^{′}}\\{y′}\end{array}]$=$[\begin{array}{l}{x+2y}\\{y}\end{array}]$,試寫出變換T對(duì)應(yīng)的矩陣A,并求出其逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為及時(shí)了解適齡公務(wù)員對(duì)開放生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了90位30歲到40歲的公務(wù)員,得到情況如表:
(1)完成表格,并判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”,并說明理由;
(2)現(xiàn)把以上頻率當(dāng)作概率,若從社會(huì)上隨機(jī)獨(dú)立抽取三位30歲到40歲的男公務(wù)員訪問,求這三人中至少有一人有意愿生二胎的概率.
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來參加座談,設(shè)邀請(qǐng)的2人中來自省女聯(lián)的人數(shù)為X,求X的公布列及數(shù)學(xué)期望E(X).
男性公務(wù)員女性公務(wù)員總計(jì)
有意愿生二胎3015
無意愿生二胎2025
總計(jì)
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-2≥0}\\{y-x-1≤0}\\{x≤1}\end{array}\right.$,設(shè)μ=x+2y,v=2x+y,則$\frac{μ}{v}$的最大值為( 。
A.1B.$\frac{5}{4}$C.$\frac{7}{5}$D.2

查看答案和解析>>

同步練習(xí)冊答案