16.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(2)畫出函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象.

分析 (1)將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,最后將內層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調遞增區(qū)間;
(2)“五點畫法”列表,描點,連線.

解答 解:函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
化簡得:$f(x)=cos(2x-\frac{π}{3})+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})=sin(2x-\frac{π}{6})$,
函數(shù)的最小正周期T=$\frac{2π}{ω}=\frac{2π}{2}$=π,
由正弦函數(shù)圖象及性質可知:$2x-\frac{π}{6}$∈[$2kπ-\frac{π}{2}$,$2kπ+\frac{π}{2}$](k∈Z)是單調增區(qū)間,
即$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2}⇒kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3}$,
故函數(shù)f(x)的增區(qū)間為:$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}](k∈Z)$.
(2)列表得:

x$-\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
$2x-\frac{π}{6}$$-\frac{π}{2}$0$\frac{π}{2}$π$\frac{3π}{2}$
y-1010-1
描圖:

點評 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,會利用五點畫法描圖,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.設p:實數(shù)a滿足不等式3a≤9,q:函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{{3({3-a})}}{2}$x2+9x無極值點.
(1)若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)a的取值范圍;
(2)已知“p∧q”為真命題,并記為r,且t:a2-(2m+$\frac{1}{2}}$)a+m(m+$\frac{1}{2}}$)>0,若r是¬t的必要不充分條件,求正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖所示,P是三角形ABC所在平面外一點,平面α∥平面ABC,α分別交線段PA、PB、PC于A′、B′、C′,若PA′:AA′=3:4,則S△A′B′C′:S△ABC=9:49.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知等差數(shù)列{an}的前n項和Sn能取到最大值,且滿足:a10+a11<0,a10•a11<0對于以下幾個結論:
①數(shù)列{an}是遞減數(shù)列;    
②數(shù)列{Sn}是遞減數(shù)列;
③數(shù)列{Sn}的最大項是S10; 
④數(shù)列{Sn}的最小的正數(shù)是S19
其中正確的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=sin(ωx+φ),(x∈R,ω>0,0<φ<π)的部分圖象如圖所示,則( 。
A.$ω=\frac{π}{2},φ=\frac{π}{4}$B.$ω=\frac{π}{3},φ=\frac{π}{6}$C.$ω=\frac{π}{4},φ=\frac{π}{4}$D.$ω=\frac{π}{4},φ=\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在平面直角坐標系xOy中,圓C的方程為(x-2)2+(y-3)2=36,直線l:y=kx+5與圓C相交于A,B兩點,M為弦AB上一動點,以M為圓心,4為半徑的圓與圓C總有公共點,則實數(shù)k的最小值為( 。
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{x+1}{2x-1}$,數(shù)列{an}的前n項和為Sn,且an=f($\frac{n}{2017}$),則S2017=( 。
A.1008B.1010C.$\frac{2019}{2}$D.2019

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某研究所計劃利用“神十”宇宙飛船進行新產品搭載實驗,計劃搭載若干件新產品A、B,該所要根據(jù)該產品的研制成本、產品重量、搭載實驗費用和預計產生的收益來決定具體搭載安排,有關數(shù)據(jù)如下表:
每件產品A每件產品B
研制成本、搭載
費用之和(萬元)
2030計劃最大資金額
300萬元
產品重量(千克)105最大搭載重量110千克
預計收益(萬元)8060
分別用x,y表示搭載新產品A,B的件數(shù).總收益用Z表示
(Ⅰ)用x,y列出滿足生產條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別搭載新產品A、B各多少件,才能使總預計收益達到最大?并求出此最大收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在△ABC 中,角A,B,C 所對的邊分別為a,b,c,已知bsinA=$\sqrt{3}$acosB.
(1)求角B 的值;
(2)若cosAsinC=$\frac{{\sqrt{3}-1}}{4}$,求角A的值.

查看答案和解析>>

同步練習冊答案