14.已知l的參數(shù)方程$\left\{\begin{array}{l}{x=-2+5t}\\{y=1-2t}\end{array}\right.$(t為參數(shù)),則直線l與x軸的交點(diǎn)坐標(biāo)為$(\frac{1}{2},0)$.

分析 令y=1-2t=0,可得t=$\frac{1}{2}$,代入x=-2+5t,即可得出x.

解答 解:∵l的參數(shù)方程$\left\{\begin{array}{l}{x=-2+5t}\\{y=1-2t}\end{array}\right.$(t為參數(shù)),令y=1-2t=0,可得t=$\frac{1}{2}$,
把t=$\frac{1}{2}$代入x=-2+5t,可得x=-2+5×$\frac{1}{2}$=$\frac{1}{2}$.
∴直線l與x軸的交點(diǎn)坐標(biāo)為$(\frac{1}{2},0)$.
故答案為:$(\frac{1}{2},0)$.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程及其應(yīng)用、直線相交問題,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若$\overrightarrow{a}$=(3,5cosx),$\overrightarrow$=(2sinx,cosx),則$\overrightarrow{a}$•$\overrightarrow$的范圍是[-6,$\frac{34}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.平面直角坐標(biāo)系xOy,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$(t為參數(shù)),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)設(shè)直線l和圓C相交于A,B兩點(diǎn),求弦AB與其所對(duì)的劣弧圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)≤3;
(2)若不等式m|x|≤f(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.證明:數(shù)列{$\frac{1}{n(n+1)}$}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-2|+|x-3|,
(1)解不等式:f(x)≤2;
(2)方程f(x)=ax-2有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{x}^{3}}{3}$-ax.
(1)若x=1是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)若a>0,求函數(shù)y=f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)≥0;
(2)若存在x0∈[-7,7],使得f(x0)+$\frac{1}{2}$m2<4m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知在四棱錐P-ABCD中,底面ABCD為菱形且∠ADC=120°,E,F(xiàn)分別是AD,PB的中點(diǎn)且PD=AD.
(1)求證:EF∥平面PCD;
(2)若∠PDA=60°,求證:EF⊥BC;
(3)若PD⊥平面ABCD,求二面角A-PB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案