【題目】對(duì)于定義在上的函數(shù),若存在距離為的兩條直線(xiàn),使得對(duì)任意都有恒成立,則稱(chēng)函數(shù)有一個(gè)寬度為的通道.給出下列函數(shù):

; ②; ③; ④

其中在區(qū)間上有一個(gè)通道寬度為的函數(shù)是__________(寫(xiě)出所有正確的序號(hào)).

【答案】

【解析】

對(duì)于①,只需考慮反比例函數(shù)在上的值域即可;對(duì)于②,要分別考慮函數(shù)的值域和圖象性質(zhì);對(duì)于③,則需從函數(shù)圖象入手,尋找符合條件的直線(xiàn)即可.

對(duì)于①,當(dāng)時(shí),,故在有一個(gè)寬度為1的通道,兩條直線(xiàn)可取,;對(duì)于②,當(dāng)時(shí),,故在不存在一個(gè)寬度為1的通道;對(duì)于③,當(dāng)時(shí),表示雙曲線(xiàn)在第一象限的部分,雙曲線(xiàn)的漸近線(xiàn)為,故可取另一直線(xiàn)為,滿(mǎn)足在有一個(gè)寬度為1的通道;對(duì)于④,,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減,且,故可得函數(shù)的值域?yàn)?/span>,兩條直線(xiàn)可取;∴在區(qū)間上通道寬度可以為1的函數(shù)有①③④,即答案為①③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>I,區(qū)間,記.證明:

1)函數(shù)在區(qū)間D上單調(diào)遞增的充要條件是:,都有

2)函數(shù)在區(qū)間D上單調(diào)遞減的充要條件是:,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線(xiàn)性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A{x|0},B{x|x23x+20},UR,求

1AB

2AB;

3)(UAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,若過(guò)且傾斜角為的直線(xiàn)交兩點(diǎn),滿(mǎn)足.

(1)求拋物線(xiàn)的方程;

(2)若上動(dòng)點(diǎn),,軸上,圓內(nèi)切于,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線(xiàn)在點(diǎn)處切線(xiàn)與直線(xiàn)垂直.

(1)試比較的大小,并說(shuō)明理由;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=2ax2+2bx,若存在實(shí)數(shù)x0∈(0t),使得對(duì)任意不為零的實(shí)數(shù)ab均有fx0)=a+b成立,則t的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為定義在實(shí)數(shù)集上的函數(shù),把方程稱(chēng)為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根、),稱(chēng)為的特征根.

(1)討論函數(shù)的奇偶性,并說(shuō)明理由;

(2)已知為給定實(shí)數(shù),求的表達(dá)式;

(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù),的單調(diào)性,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.

(1)當(dāng)a=1時(shí),求f(x)≤3的解集;

(2)當(dāng)x[1,2]時(shí),f(x)≤3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案