與圓類似,連接圓錐曲線上兩點(diǎn)的線段叫做圓錐曲線的弦.過有心曲線(橢圓、雙曲線)中心(即對稱中心)的弦叫做有心曲線的直徑.對圓x2+y2=r2,由直徑所對的圓周角是直角出發(fā),可得:若AB是圓O的直徑,M是圓O上異于A、B的一點(diǎn),且AM,BM均與坐標(biāo)軸不平行,則kAM•kBM=-1.類比到橢圓數(shù)學(xué)公式,類似結(jié)論是________

若AB是橢圓的直徑,M是橢圓上異于A、B的一點(diǎn),且AM、BM均與坐標(biāo)軸不平行,則kAM•kBM=-
分析:本題考查的知識點(diǎn)是類比推理,由圓的性質(zhì)類比猜想橢圓的類似性質(zhì),一般的思路是:點(diǎn)到點(diǎn),線到線,直徑到直徑等類比后的結(jié)論應(yīng)該為關(guān)于橢圓的一個類似結(jié)論.
解答:定理:如果圓x2+y2=r2(r>0)上異于一條直徑兩個端點(diǎn)的任意一點(diǎn)與這條直徑兩個端點(diǎn)連線的都斜率存在,則這兩條直線的斜率乘積為定值-1,即kAM•kBM=-1.
運(yùn)用類比推理,寫出該定理在橢圓中的推廣:若AB是橢圓的直徑,M是橢圓上異于A、B的一點(diǎn),且AM、BM均與坐標(biāo)軸不平行,則kAM•kBM=-
故答案為:若AB是橢圓的直徑,M是橢圓上異于A、B的一點(diǎn),且AM、BM均與坐標(biāo)軸不平行,則kAM•kBM=-
點(diǎn)評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

與圓類似,連接圓錐曲線上兩點(diǎn)的線段叫做圓錐曲線的弦.過有心曲線(橢圓、雙曲線)中心(即對稱中心)的弦叫做有心曲線的直徑.對圓x2+y2=r2,由直徑所對的圓周角是直角出發(fā),可得:若AB是圓O的直徑,M是圓O上異于A、B的一點(diǎn),且AM,BM均與坐標(biāo)軸不平行,則kAM•kBM=-1.類比到橢圓
x2
a2
+
y2
b2
=1
,類似結(jié)論是
若AB是橢圓
x2
a2
+
y2
b2
=1
的直徑,M是橢圓上異于A、B的一點(diǎn),且AM、BM均與坐標(biāo)軸不平行,則kAM•kBM=-
b2
a2
若AB是橢圓
x2
a2
+
y2
b2
=1
的直徑,M是橢圓上異于A、B的一點(diǎn),且AM、BM均與坐標(biāo)軸不平行,則kAM•kBM=-
b2
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與圓類似,連接圓錐曲線上兩點(diǎn)的線段叫做圓錐曲線的弦.過有心曲線(橢圓、雙曲線)中心(即對稱中心)的弦叫做有心曲線的直徑.對圓x2+y2=r2,由直徑所對的圓周角是直角出發(fā),可得:若AB是圓O的直徑,M是圓O上異于A、B的一點(diǎn),且AM,BM均與坐標(biāo)軸不平行,則kAM•kBM=-1.類比到橢圓
x2
a2
+
y2
b2
=1
,類似結(jié)論是______

查看答案和解析>>

同步練習(xí)冊答案