設(shè)函數(shù)f(x)=x2+2x-3與函數(shù)g(x)的圖象關(guān)于x=3對稱,則g(x)的表達(dá)式為
 
考點:函數(shù)解析式的求解及常用方法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,設(shè)點(x,y)在函數(shù)g(x)的圖象上,則(6-x,y)在函數(shù)f(x)的圖象上;從而代入函數(shù)解析式化簡即可.
解答: 解:設(shè)點(x,y)在函數(shù)g(x)的圖象上,則(6-x,y)在函數(shù)f(x)的圖象上;
即y=f(6-x)=(6-x)2+2(6-x)-3=x2-14x+45;
故g(x)=x2-14x+45;
故答案為:g(x)=x2-14x+45.
點評:本題考查了函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用0到9這10個數(shù)字,可以組成沒有重復(fù)數(shù)字且被5整除的三位數(shù)有( 。
A、72個B、136個
C、200個D、648個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
π
2
-
π
2
cosxdx,則二項式(a
x
-
1
x
6的展開式中含x2項的系數(shù)是( 。
A、192B、-192
C、182D、-182

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:
①函數(shù)y=tanx在它的定義域內(nèi)是增函數(shù);
②若α、β是第一象限角,且α>β,則tanα>tanβ;
③函數(shù)y=Asin(ωx+φ)一定是奇函數(shù);
④函數(shù)y=|cos(2x+
π
3
)|的最小正周期為
π
2

其中為正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

口袋中有標(biāo)號分別為1,2,3,4且大小相同的四個小球.
(1)從中取出2個小球,求至少有1個標(biāo)號大于2的概率;
(2)從中取出一個記下標(biāo)號,然后放回,再取一個記下標(biāo)號,求兩次號數(shù)和大于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個幾何體的體積是( 。
A、
3
2
B、1
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ax2-b=0是關(guān)于x的一元二次方程,其中a、b∈{1,2,3,4},解集不同的一元二次方程的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l與半徑為1的⊙D相切于點C,動點P到直線l的距離為d,若d=
2
|PD|
(Ⅰ)求點P的軌跡方程;
(Ⅱ)若軌跡上的點P與同一平面上的點G、M分別滿足
GD
=2
DC
MP
=3
PD
,
GM
PG
+
GM
PM
=0,求以P、G、D為頂點的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20個不加區(qū)別的小球放入編號為1、2、3的三個盒子中,要求每個盒內(nèi)的球數(shù)不小于它的編號數(shù),不同的放法種數(shù)
 

查看答案和解析>>

同步練習(xí)冊答案