已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域內(nèi)的隨機(jī)點(diǎn),求y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.
【答案】分析:(1)本題是一個等可能事件的概率,試驗(yàn)發(fā)生包含的事件是3×5,滿足條件的事件是函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù),根據(jù)二次函數(shù)的對稱軸,寫出滿足條件的結(jié)果,得到概率.
(2)本題是一個等可能事件的概率問題,根據(jù)第一問做出的函數(shù)是增函數(shù),得到試驗(yàn)發(fā)生包含的事件對應(yīng)的區(qū)域和滿足條件的事件對應(yīng)的區(qū)域,做出面積,得到結(jié)果.
解答:解:(1)由題意知本題是一個等可能事件的概率,
∵試驗(yàn)發(fā)生包含的事件是3×5=15,
函數(shù)f(x)=ax2-4bx+1的圖象的對稱軸為
要使f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù),
當(dāng)且僅當(dāng)a>0且,即2b≤a
若a=1則b=-1,若a=2則b=-1,1;若a=3則b=-1,1;
∴事件包含基本事件的個數(shù)是1+2+2=5
∴所求事件的概率為

(2)由(Ⅰ)知當(dāng)且僅當(dāng)2b≤a且a>0時,
函數(shù)f(x)=ax2-4bx+1在區(qū)是間[1,+∞)上為增函數(shù),
依條件可知試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213926530274020/SYS201310232139265302740017_DA/3.png">
構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠?br />由得交點(diǎn)坐標(biāo)為,
∴所求事件的概率為
點(diǎn)評:古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過長度、面積、和體積、的比值得到.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在一個紅綠燈路口,紅燈、黃燈和綠燈的時間分別為30秒、5秒和40秒.當(dāng)你到達(dá)路口時,求不是紅燈的概率.
(2)已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(Ⅰ)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[|m+n|2上是增函數(shù)的概率;
(Ⅱ)設(shè)點(diǎn)(
1
2
|m+n|min=
2
2
)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求MD上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次不等式ax2+bx+c>0的解集為(-2,3),則關(guān)于x的不等式cx+b
x
+a<0的解集為
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•藍(lán)山縣模擬)已知關(guān)于x的一元二次不等式ax2+bx+c≥0在實(shí)數(shù)集上恒成立,且a<b,則T=
a+b+cb-a
的最小值為
3
3

查看答案和解析>>

同步練習(xí)冊答案