已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為s(t)=t3+bt2+ct+d,下圖的曲線是其運(yùn)動(dòng)軌跡的一部分.

(Ⅰ)試求b、c之值;

(Ⅱ)若當(dāng)時(shí),s(t)<3d2恒成立,求d的取值范圍.

答案:
解析:

  解:(Ⅰ),令,則對(duì)應(yīng)方程的兩根為1,3,

  則

  (Ⅱ),∵

  且又∵

  ∴


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為s(t)=t3+bt2+ct+d,如圖是其運(yùn)動(dòng)軌跡的一部分,若t∈[
12
,4]時(shí),s(t)<3d2恒成立,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如右圖所示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)
(1)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(2)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=
1
2
為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說明理由;
(Ⅲ)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=
1
2
為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12)如右圖所示,定義在D上的函數(shù),如果滿足:對(duì),常數(shù)A,都有成立,則稱函數(shù)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)

(1)試判斷函數(shù)上是否有下界?并說明理由;

(2)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,要使在上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知質(zhì)點(diǎn)運(yùn)動(dòng)方程是st)=gt2+2t-1,求質(zhì)點(diǎn)在t=4時(shí)的瞬時(shí)速度,其中s的單位是m,t的單位是s.?

(2)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程是st)=3t2-2t+1,求質(zhì)點(diǎn)在t=10時(shí)的①瞬時(shí)速度;②動(dòng)能(設(shè)物體的質(zhì)量為m.?

查看答案和解析>>

同步練習(xí)冊(cè)答案