對于任意n∈N*,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于An,Bn兩點,以|AnBn|表示該兩點的距離,則|A1B1|+|A2B2|+…+|A1999B1999|的值是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:根據(jù)函數(shù)拋物線方程令y=0求得x的關系式,代入兩點間的距離公式可得到|AnBn|的關系式,然后代入到|A1B1|+|A2B2|+…+|A1999B1999|中即可得到答案.
解答:y=(n2+n)x2-(2n+1)x+1=[x-][x-]
令y=0,則x=
∴|AnBn|=-
∴|A1B1|+|A2B2|+…+|A1999B1999|=(1-)+(-)+…+(-
=(1-+-)+…+(-
=1-=
故選D
點評:本題主要考查數(shù)列求和的累加法.考查對基礎知識的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的某個焦點為F,雙曲線G:
x2
a2
-
y2
b2
=1
(a,b>0)的某個焦點為F.
(1)請在
 
上補充條件,使得橢圓的方程為
x2
3
+y2=1
;友情提示:不可以補充形如a=
3
,b=1
之類的條件.
(2)命題一:“已知拋物線y2=2px(p>0)的焦點為F,定點P(m,n)滿足n2-2pm>0,以PF為直徑的圓交y軸于A、B,則直線PA、PB與拋物線相切”.命題中涉及了這么幾個要素:對于任意拋物線P(x,y),定點P,以PF為直徑的圓交F(0,1)軸于A、B,PA、PB與拋物線相切.試類比上述命題分別寫出一個關于橢圓C和雙曲線G的類似正確的命題;
(3)證明命題一的正確性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意n∈N*,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于An,Bn兩點,以|AnBn|表示該兩點的距離,則|A1B1|+|A2B2|+…+|A1999B1999|的值是( 。
A、
1998
1999
B、
2000
1999
C、
1998
2000
D、
1999
2000

查看答案和解析>>

科目:高中數(shù)學 來源:柳州三模 題型:單選題

對于任意n∈N*,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于An,Bn兩點,以|AnBn|表示該兩點的距離,則|A1B1|+|A2B2|+…+|A1999B1999|的值是( 。
A.
1998
1999
B.
2000
1999
C.
1998
2000
D.
1999
2000

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學一輪復習必備(第69課時):第八章 圓錐曲線方程-圓錐曲線的應用(2)(解析版) 題型:選擇題

對于任意n∈N*,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于An,Bn兩點,以|AnBn|表示該兩點的距離,則|A1B1|+|A2B2|+…+|A1999B1999|的值是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案