函數(shù)f(x)=log2(x2-ax+3a)在[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是( 。
A、a≤4B、a≤2
C、-4<a≤4D、-2≤a≤4
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得y=x2-ax+3a在[2,+∞)上是增函數(shù)且大于零,故有
a
2
≤2
4-2a+3a>0
,由此求得a的范圍.
解答: 解:∵函數(shù)f(x)=log2(x2-ax+3a)在[2,+∞)上是增函數(shù),
∴y=x2-ax+3a在[2,+∞)上是增函數(shù)且大于零,
故有
a
2
≤2
4-2a+3a>0
,求得-4<a≤4,
故選:C.
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:x2+y2-2x-2y-2=0.
(1)若直線l:ax+by-4=0平分圓A的周長,求原點O到直線l的距離的最大值; 
(2)若圓B平分圓A的周長,圓心B在直線y=2x上,求符合條件且半徑最小的圓B的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銀川市有甲,乙兩家室內(nèi)羽毛球館,兩家設(shè)備和服務(wù)都相當(dāng),但收費方式不同.甲羽毛球館每小時50元;乙羽毛球館按月計費,一個月中30小時以內(nèi)(含30小時)900元,超過30小時的部分每小時20元.肖老師為了鍛煉身體,準(zhǔn)備下個月從這兩家羽毛球館中選擇一家進行健身活動,其活動時間不少于15小時,也不超過40小時.設(shè)甲羽毛球館健身x小時的收費為f(x)元,乙羽毛球館健身x小時的收費為g(x)元.
(Ⅰ)當(dāng)15≤x≤40時,分別寫出函數(shù)f(x)和g(x)的表達式;
(Ⅱ)請問肖老師選擇哪家羽毛球館健身比較合算?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈(-π,-
π
2
),且cosx=-
4
5
,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義域為R的函數(shù)f(x)=
a|x-1|,(x≥0)
x2+bx+c,(x<0)
,f(2)=4,f(-3)=f(-1)=1.
(1)求f(x)的解析式;
(2)若關(guān)于x的方程f2(x)-(2m+1)f(x)+m2=0有7個不同的實數(shù)解,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:1-m<x<m+1(m>0),q:x2-x-6≤0,若¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=
1
4
,a5=
1
32

(Ⅰ)試求{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足:bn=
n
an
(n∈N*),試求{bn}的前n項和公式Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出求
1
2+
1
2+
1
2+…
(共6個2)的值的算法程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①函數(shù)y=-
2
x
在其定義域上是增函數(shù);        ②函數(shù)y=
x2(x-1)
x-1
是偶函數(shù);
③函數(shù)y=log2(x-1)的圖象可由y=log2(x+1)的圖象向右平移2個單位得到;
④若F(x)=
x,x>0
-x,x<0
,f(-1)=0;     ⑤[(-2)2] -
1
2
=-
1
2

則上述五個命題中正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案