如圖,正三棱錐的底面邊長為,側棱長為,為棱的中點.
(1)求異面直線與所成角的大。ńY果用反三角函數(shù)值表示);
(2)求該三棱錐的體積.
(1);(2).
解析試題分析:(1)求異面直線所成的角,一般是按照定義作出這個角,即作平行線,把空間角化為平面角,通過解三角形來處理,而作平行線,一般都是過異面直線中一條上的某點作一條的平行線,如本題中有是的中點,我們只要取中點,則就有∥,(或其補角)就是所求;(2)要求棱錐體積,就要求出底面積(本題底面是正三角形,面積易求)和高,正棱錐中我們知道棱錐的高,側棱,側棱在底面上的射影構成一個直角三角形,可在這個直角三角形中求出正棱錐的高.
試題解析:(1)取中點,連結、,因為∥,所以就是異面直線與所成的角(或其補角). (2分)
在△中,,, (1分)
所以. (2分)
所以,異面直線與所成的角的大小為. (1分)
(2)作平面,則是正△的中心, (1分)
連結,, (1分)
所以, (1分)
所以,. (2分)
考點:(1)異面直線所成的角;(2)棱錐的體積.
科目:高中數(shù)學 來源: 題型:解答題
如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了并流入杯中,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由。(冰、水的體積差異忽略不計)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,PA平面ABCD,四邊形ABCD為矩形,PA=AB=,AD=1,點F是PB的中點,點E在邊BC上移動.
(I)求三棱錐E—PAD的體積;
(II)試問當點E在BC的何處時,有EF//平面PAC;
(1lI)證明:無論點E在邊BC的何處,都有PEAF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知半徑為的球內(nèi)有一個內(nèi)接正方體(即正方體的頂點都在球面上).
(1)求此球的體積;
(2)求此球的內(nèi)接正方體的體積;
(3)求此球的表面積與其內(nèi)接正方體的全面積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖是某三棱柱被削去一個底面后的直觀圖、側(左)視圖與俯視圖.已知CF=2AD,側視圖是邊長為2的等邊三角形,俯視圖是直角梯形,有關數(shù)據(jù)如圖所示.求該幾何體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com