已知等差數(shù)列{an}一共有12項(xiàng),其中奇數(shù)項(xiàng)之和為10,偶數(shù)項(xiàng)之和為22,則公差為


  1. A.
    12
  2. B.
    5
  3. C.
    2
  4. D.
    1
C
分析:根據(jù)等差數(shù)列的性質(zhì)可知,每一偶數(shù)項(xiàng)減去前一個(gè)奇數(shù)項(xiàng)為公差,由等差數(shù)列的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)的和分別是10與22以及項(xiàng)數(shù),根據(jù)等差數(shù)列的性質(zhì)即可求得數(shù)列的公差.
解答:∵等差數(shù)列{an}奇數(shù)項(xiàng)之和為10,偶數(shù)項(xiàng)之和為22,且共有12項(xiàng),
∴公差d===2.
故選C
點(diǎn)評(píng):此題考查了等差數(shù)列性質(zhì)的運(yùn)用,是高考中?嫉幕绢}型.熟練等差數(shù)列的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案