10.設(shè)全集U=R,集合A={x|x2-1<0},B={x|x(x-3)>0}則A∩(∁UB)=( 。
A.{x|0<x<2}B.{x|0<x<1}C.{x|0≤x<1}D.{x|-1<x<0}

分析 利用不等式的解法分別化簡集合A,B,再利用集合的運算性質(zhì)即可得出.

解答 解:集合A={x|x2-1<0}=(-1,1),B={x|x(x-3)>0}=(-∞,0)∪(3,+∞).
UB=[0,3],
則A∩(∁UB)=[0,1). 
故選:C.

點評 本題考查了不等式的解法、集合的運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$(n∈N*),數(shù)列{bn}的前n項和Tn滿足Tn=3n-1(n∈N*).
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{$\frac{_{n}}{2{a}_{n}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)$y=\frac{1}{{\sqrt{|x|-x}}}$的定義域為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列說法正確的是( 。
A.若“x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題
B.在△ABC中,sinA>sinB的充要條件是A>B
C.函數(shù)f(x)=sinx+$\frac{4}{sinx}$,x∈(0,π)的最小值為4
D.?x∈R,使得sinx•cosx=$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.函數(shù)f(x)=(log2x-2)(log4x-$\frac{1}{2}$).
(1)當x∈[1,4]時.求該函數(shù)的值域;
(2)若f(x)>mlog4x對于x∈[4,16]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,c=2,且sin2A+sin2B=sinAsinB+sin2C,則△ABC面積的最大值為(  )
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知以橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{m}$=1(m>0)的焦點連線F1F2為直徑的圓和該橢圓在第一象限相交于點P.若△PF1F2的面積為1,則m的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.下列條件:(1)ab>0,(2)ab<0,(3)a>0,b>0,(4)a<0,b<0,其中能使$\frac{a}+\frac{a}≥2$成立的條件的個數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow$=(b1,b2),定義一種向量積:$\overrightarrow{a}$?$\overrightarrow$=(a1b1,a2b2),已知$\vec m=(1,\frac{1}{2}),\vec n=(0,1)$,且點P(x,y)在函數(shù)$y=sin\frac{x}{2}$的圖象上運動,點q在函數(shù)y=f(x)的圖象上運動,且點p和點q滿足:$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$(其中O為坐標原點),則函數(shù)y=f(x)的最大值A(chǔ)及最小正周期T分別為( 。
A.1,πB.1,4πC.$\frac{3}{2},π$D.$\frac{3}{2},4π$

查看答案和解析>>

同步練習冊答案