精英家教網 > 高中數學 > 題目詳情

(本小題15分)

已知橢圓C:,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G: 是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.

(1)若橢圓C經過兩點、,求橢圓C的方程;

(2)當為定值時,求證:直線MN經過一定點E,并求的值(O是坐標原點);

(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

解:(1)令橢圓,其中,

,所以,即橢圓為.         ………3分

(2)直線,

設點,則中點為,

所以點所在的圓的方程為,

化簡為,                                  ………5分

與圓作差,即有直線,

因為點在直線上,所以

所以,所以,

,故定點,   …8分

.                          ………9分

(3)由直線AB與圓G: 是橢圓的焦半距)相離,

,即,,

因為, 所以,①              ………11分

連接若存在點使為正三角形,則在中,,

所以,

,得

因為,所以,②                            ………14分

由①②,

所以.                                     ………15分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題15分)

已知向量

(1)當時,求的值的集合;      (2)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題15分)已知拋物線,過點的直線交拋物線兩點,且

(1)求拋物線的方程;

(2)過點軸的平行線與直線相交于點,若是等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:2010-2011年浙江省寧?h正學中學高二下學期第二次階段性考試重點班文數 題型:解答題

(本小題15分)
已知函數有極值.
(1)求的取值范圍;
(2)若處取得極值,且當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省高一第一學期期末測試數學試卷 題型:解答題

(本小題15分)

已知函數在一個周期內的圖象如下圖所示.

 (1)求函數的解析式;                                         

 (2)求函數的單調遞增區(qū)間;                                 

x

 
(3)設,且方程有兩個              

不同的實數根,求實數的取值范圍.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:2010-2011年浙江省高二下學期第二次階段性考試重點班文數 題型:解答題

(本小題15分)

已知函數有極值.

(1)求的取值范圍;

(2)若處取得極值,且當時,恒成立,求的取值范圍.

 

查看答案和解析>>

同步練習冊答案