20.在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且(a2+b2-c2)tanC=$\sqrt{3}$ab.
(1)求角C的大;
(2)求$\sqrt{3}$sinBcosB+cos2B的取值范圍.

分析 (1)根據(jù)題意,利用余弦定理即可求出sinC以及C的值;
(2)利用三角恒等變換化簡(jiǎn)代數(shù)式,利用B的取值范圍再計(jì)算即可.

解答 解:(1)由(a2+b2-c2)tanC=$\sqrt{3}$ab得,
$\frac{{{a^2}+{b^2}-{c^2}}}{2ab}tanC=\frac{{\sqrt{3}}}{2}$,…(1分)
即$cosC•tanC=\frac{{\sqrt{3}}}{2}$;…(2分)
∴$sinC=\frac{{\sqrt{3}}}{2}$,…(3分)
又銳角△ABC,
∴C=$\frac{π}{3}$;…(4分)
(2)$\sqrt{3}sinBcosB+{cos^2}B$=$\frac{{\sqrt{3}}}{2}sin2B+\frac{1+cos2B}{2}$
=$sin(2B+\frac{π}{6})+\frac{1}{2}$,…(7分)
又△ABC為銳角三角形,且$C=\frac{π}{3}$,
∴B∈($\frac{π}{6}$,$\frac{π}{2}$),
∴2B+$\frac{π}{6}$∈($\frac{π}{2}$,$\frac{7π}{6}$),…(10分)
∴sin(2B+$\frac{π}{6}$)∈(-$\frac{1}{2}$,1),
∴$sin(2B+\frac{π}{6})+\frac{1}{2}∈(0,\frac{3}{2})$.…(12分)

點(diǎn)評(píng) 本題考查了余弦定理以及三角恒等變換的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知2Sn=3n+1+2n-3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2-an,n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an,求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn=$\frac{{n({3-{b_n}})}}{2}$,數(shù)列{cn}的前n項(xiàng)和為Tn=$\frac{15}{4}$.求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a>b,橢圓C1的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,雙曲線C2的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,C1與C2的離心率之積為$\frac{\sqrt{3}}{2}$,則C2的漸近線方程為$x±\sqrt{2}y=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在R上的函數(shù)f(x)滿足:f(x)•f(x+2)=13,若f(3)=4,則f(2017)=(  )
A.4B.$\frac{13}{4}$C.26D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是470

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若loga3<1,則a取值范圍是( 。
A.a>3B.1<a<3C.0<a<1D.a>3或0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式(${\frac{1}{2}}$)x-5≤2x的解集是{x|x≥$\frac{5}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}滿足a1=1,an+an+1=($\frac{1}{3}$)n,Sn=a1+3a2+32a3+…+3n-1an,利用類似等比數(shù)列的求和方法,可求得4Sn-3nan=n.

查看答案和解析>>

同步練習(xí)冊(cè)答案