如下圖,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AA1=4,AB=5,點(diǎn)D是AB的中點(diǎn),

(1)求證:AC1∥平面CDB1;

(2)求異面直線AC1與B1C所成角的余弦值.

思路解析:本題第一問要證明直線與平面平行,可以圍繞著線面平行的判定定理,轉(zhuǎn)而去證明線線平行,結(jié)合已知條件不難得以證明;第二問是要求異面直線所成的角,就要考慮平移其中一條(或兩條)直線,從而轉(zhuǎn)化為相交兩直線所成的角的問題,從而得以求解.

(1)證明:設(shè)CB1與C1B的交點(diǎn)為E,連結(jié)DE.

∵D是AB的中點(diǎn),E是BC1的中點(diǎn),

∴DE∥AC1.

∵DE平面CDB1,AC1平面CDB1,

∴AC1∥平面CDB1.

(2)解:∵DE∥AC1,∴∠CED為AC1與B1C所成的角.

在△CED中,ED=AC1=,CD=AB=,CE=CB1=2,

∴由余弦定理得

cos∠CED=.

∴異面直線AC1與B1C所成角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修二數(shù)學(xué)蘇教版 蘇教版 題型:022

如下圖,有兩個相同的直三棱柱,高為,底面三角形的三邊長分別為3a、4a、5a(a>0).用它們拼成一個三棱柱或四棱柱,在所有可能的情形中,全面積最小的是一個四棱柱,則a的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:022

(2005上海,11)如下圖,有兩個相同的直三棱柱,高為,底面三角形的三邊長分別為3a、4a、5a(a0).用它們拼成一個三棱柱或四棱柱,在所有可能的情況中,全面積最小的是一個四棱柱,則a的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下圖,在直三棱柱ABC—A1B1C1中,∠ACB=90°,BC=CC1=a,AC=2a.

(1)求證:AB1⊥BC1;

(2)求二面角B—AB1—C的大;

(3)求點(diǎn)A1到平面AB1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下圖所示,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB,D,E分別為棱C1C,B1C1的中點(diǎn)。

(1)求點(diǎn)B到面A1C1CA的距離;

(2)求二面角B―A1D―A的大小;

(3)在線段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?若存在,確定其位置并證明結(jié)論;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下圖所示,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB,D,E分別為棱C1C,B1C1的中點(diǎn)。

(1)求點(diǎn)B到面A1C1CA的距離;

(2)求二面角B―A1D―A的大。

(3)在線段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?若存在,確定其位置并證明結(jié)論;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案