18.一艘海輪從A出發(fā),沿北偏東75°的方向航行(2$\sqrt{3}$-2)nmile到達海島B,然后從B出發(fā),沿北偏東15°的方向航行4nmile到達海島C.
(1)求AC的長;
(2)如果下次航行直接從A出發(fā)到達C,求∠CAB的大小?

分析 由題意,結合圖形知,在△ABC中,∠ABC=120°,AB=2$\sqrt{3}$-2,BC=4,故可由余弦定理求出邊AC的長度,由于此時在△ABC中,∠ABC=120°,三邊長度已知,故可由正弦定理建立方程,求出∠CAB的正弦值,即可得出結論.

解答 解:由題意,在△ABC中,∠ABC=180°-75°+15°=120°,AB=2$\sqrt{3}$-2,BC=4,
根據(jù)余弦定理得
AC2=AB2+BC2-2AB×BC×cos∠ABC=(2$\sqrt{3}$-2)2+42+(2$\sqrt{3}$-2)×4=24,
所以AC=2$\sqrt{6}$.
根據(jù)正弦定理得,sin∠BAC=$\frac{4×\frac{\sqrt{3}}{2}}{2\sqrt{6}}$=$\frac{\sqrt{2}}{2}$,∴∠CAB=45°.

點評 本題是解三角形在實際問題中的應用,考查了正弦定理、余弦定理,方位角等知識,解題的關鍵是將實際問題中的距離、角等條件轉化到一個三角形中,正弦定理與余弦定理求角與邊,解三角形在實際測量問題-遙測中有著較為廣泛的應用,此類問題求解的重點是將已知的條件轉化到一個三角形中方便利用解三角形的相關公式與定理,本題考查了轉化的思想,方程的思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-a(x-1)2-(x-1)(其中常數(shù)a∈R).
(Ⅰ)討論函數(shù)f(x)的單調區(qū)間;
(Ⅱ)當x∈(0,1)時,f(x)<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若sin4α+cos4α=1,則sinα+cosα等于±1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$,x∈R,求:
(1)函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(2)f(x)在$[0,\frac{π}{2}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,長方體ABCD-A1B1C1D1,AB=BC=2,AA1=$\sqrt{3}$,M為A1D1的中點,P為底面四邊形ABCD內的動點,且滿足PM=PC,則點P的軌跡的長度為( 。
A.$\sqrt{3}$B.3C.$\frac{2π}{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,已知正方形ABCD的邊長為1,E在CD延長線上,且DE=CD.動點P從點A出發(fā)沿正方形ABCD的邊按逆進針方向運動一周回到A點,其中$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AE}$,則下列命題正確的是①②.(填上所有正確命題的序號)
①當點P為AD中點時,λ+μ=1;
②λ+μ的最大值為3;
③若y為給定的正數(shù),則一存在向量$\overrightarrow{AP}$和實數(shù)x,使$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\frac{\overrightarrow{AP}}{|\overrightarrow{AP}|}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若復數(shù)z滿足$\frac{1-z}{1+z}$=i,則|$\overline{z}$+1|的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知tan(α+β)=3,tan(α-β)=5,則tan2α=( 。
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-$\frac{4}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.某班有56名學生,現(xiàn)根據(jù)學生學號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知4號、32號、46號學生在樣本中,那么樣本中還有一個學生的學號是18號.

查看答案和解析>>

同步練習冊答案