一個口袋中裝有n個紅球(n≥4且n∈N)和5個白球,從中摸兩個球,兩個球顏色相同則為中獎.
(Ⅰ)若一次摸兩個球,試用n表示一次摸球中獎的概率p;
(Ⅱ)若一次摸一個球,當n=4時,求二次摸球(每次摸球后不放回)中獎的概率;
(Ⅲ)在(Ⅰ)的條件下,記三次摸獎(每次摸獎后放回)恰有二次中獎的概率為P,當n取多少時,P最大?
分析:(Ⅰ)本題是一個等可能事件的概率,試驗發(fā)生包含的事件是一次摸獎從n+5個球中任選兩個,滿足條件的事件是兩球不同色有Cn1C51種,根據(jù)等可能事件的概率得到結果.
(Ⅱ)本題是一個等可能事件的概率,試驗發(fā)生包含的事件數(shù)C81C91,滿足條件的事件是C41C31+C51C41,根據(jù)等可能事件的概率得到結果.
(III)設每次摸獎中獎的概率為p,則三次摸獎(每次摸獎后放回),恰有二次中獎的概率為P為P=P3(2)=C32•p2•(1-p)=3(p2-p3),當p=
2
3
時,P取得最大值.得到n的值.
解答:解:(Ⅰ)由題意知本題是一個等可能事件的概率,
試驗發(fā)生包含的事件是一次摸獎從n+5個球中任選兩個,有Cn+52種,
滿足條件的事件是兩球不同色有Cn1C51種,
根據(jù)等可能事件的概率得到一次摸獎中獎的概率p=1-
10n
(n+5)(n+4)
=
n2-n+20
n2+9n+20

(Ⅱ)若n=4,由題意知本題是一個等可能事件的概率
試驗發(fā)生包含的事件數(shù)C81C91,
滿足條件的事件是C41C31+C51C41
得到二次摸獎(每次摸獎后不放回)中獎的概率是P=
C
1
4
C
1
3
+
C
1
5
C
1
4
C
1
9
C
1
8
=
4
9

答:二次摸球(每次摸球后不放回)中獎的概率為
4
9
..
(Ⅲ)設每次摸獎中獎的概率為p,則三次摸獎(每次摸獎后放回)
恰有二次中獎的概率為P為P=P3(2)=C32•p2•(1-p)=3(p2-p3),0<p<1,..
p=
2
3
時,P取得最大值.
p=1-
10n
(n+5)(n+4)
=
2
3
,解得n=20
答:當n=20時,三次摸獎(每次摸獎后放回)恰有二次中獎的概率最大
點評:本題考查等可能事件的概率,考查等可能事件的概率的應用,這種問題可以出現(xiàn)在大型考試的解答題目中,是一個綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知一個口袋中裝有n個紅球(n≥1且n∈N+)和2個白球,從中有放回連續(xù)摸三次,每次摸出2個球,若兩個球顏色不同,則為中獎.
(1)當n=3時,設中獎次數(shù)為ζ,求ζ的分布列及期望;
(2)記三次摸球中,恰好兩次中獎概率為P,當n為多少時,P有最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個口袋中裝有n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球顏色不同則為中獎.
(Ⅰ)試用n表示一次摸獎中獎的概率p;
(Ⅱ)若n=5,求三次摸獎(每次摸獎后放回)恰有一次中獎的概率;
(Ⅲ) 記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.當n取多少時,P最大?

查看答案和解析>>

科目:高中數(shù)學 來源:孝感模擬 題型:解答題

一個口袋中裝有n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球顏色不同則為中獎.
(Ⅰ)試用n表示一次摸獎中獎的概率p;
(Ⅱ)若n=5,求三次摸獎(每次摸獎后放回)恰有一次中獎的概率;
(Ⅲ) 記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.當n取多少時,P最大?

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年江蘇省南京市金陵中學高三數(shù)學綜合試卷(解析版) 題型:解答題

一個口袋中裝有n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球顏色不同則為中獎.
(Ⅰ)試用n表示一次摸獎中獎的概率p;
(Ⅱ)若n=5,求三次摸獎(每次摸獎后放回)恰有一次中獎的概率;
(Ⅲ) 記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.當n取多少時,P最大?

查看答案和解析>>

同步練習冊答案