求函數(shù)f(x)=2x2-x的最小值.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)二次函數(shù)f(x)的圖象與性質(zhì),得出x=
1
4
時,f(x)取得最小值,求出即可.
解答: 解:∵函數(shù)f(x)=2x2-x是二次函數(shù),圖象是拋物線,且開口向上,
對稱軸是x=
1
4
,
∴當x=
1
4
時,f(x)取得最小值是
f(
1
4
)=2×(
1
4
)
2
-
1
4
=-
1
8
點評:本題考查了利用二次函數(shù)的圖象與性質(zhì)求函數(shù)最值的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,點D在OC的延長線上,AD與⊙O相切,割線DM與⊙O相交于點M,N,若∠B=30°,AC=1,則DM×DN=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,圓O是△ABC的外接圓,BA=m,BC=
m
4
,∠ABC=60°,若
BO
=x
BA
+y
BC
,則x+y的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2
1
(x-
1
x
)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2-2y2≤cx(y-x)對任意滿足x>y>0的實數(shù)x,y恒成立,則實數(shù)c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(x-1)31(2x-1)1981=a0+a1x+a2x2+a3x3+…+a2012x2012,求:
(1)a1+a2+a3+…+a2012
(2)a0+a1+2a2+3a3+…+2012a2012

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lim
△x→0
f(x0+△x)-f(x0-△x)
2△x
=( 。
A、
1
2
f′(x0
B、f′(x0
C、2f′(x0
D、-f′(x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱柱ABC-A1B1C1中,側棱與底面垂直,∠ABC=90°,AB=BC=BB1,M是A1B1的中點,N是AC1與A1C的交點.
(1)求證:MN∥平面BCC1B1;
(2)求證:MN⊥平面ABC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面上三個力F1,F(xiàn)2,F(xiàn)3作用一點O,|F1|=1N,|F2|=
6
+
2
2
N,|F3|=(
3
+1)N,若使這三個力作用于點O處于平衡狀態(tài),則三個力之間的夾角分別為多少?

查看答案和解析>>

同步練習冊答案