函數(shù)y=f(x)為偶函數(shù),且[0,+∞)上單調(diào)遞減,則y=f(2-x2)的一個單調(diào)遞增區(qū)間為( 。
A、(-∞,0]
B、[0,+∞)
C、[0,
2
]
D、[
2
,+∞)
考點:函數(shù)奇偶性的性質(zhì)
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)y=f(x)為偶函數(shù),可判斷y=f(2-x2)也為偶函數(shù).令m=2-x2,y=f(m),m∈[0,+∞)上單調(diào)遞減,m∈(-∞,0)上單調(diào)遞增最后根據(jù)復(fù)合函數(shù)單調(diào)性的關(guān)系,同增異減可判斷答案.
解答: 解:由y=f(x)為偶函數(shù),可判斷y=f(2-x2)也為偶函數(shù),
令m=2-x2,y=f(m),m∈[0,+∞)上單調(diào)遞減,m∈(-∞,0)上單調(diào)遞增
因為m=2-x2,x∈(0,+∞)上為減函數(shù),x>0時2-x2=0,則x=
2

所以f(2-x2)在(0,
2
)上為增函數(shù),在(
2
,+∞)上為減函數(shù)
故選:C
點評:本題考查了偶函數(shù),和復(fù)合函數(shù)的單調(diào)性,以及偶函數(shù)圖象的對稱性,屬于綜合試題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x≥0},且A∩B=B,則集合B可能是(  )
A、{1,2}
B、{x|x≤1}
C、{-1,0,1}
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知盒中有10個燈泡,其中8個正品,2個次品.需要從中取出2個正品,每次取出1個,取出后不放回,直到取出2個正品為止.設(shè)ξ為取出的次數(shù),求P(ξ=4)=(  )
A、
4
15
B、
1
15
C、
28
45
D、
14
45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩座燈塔A和B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與B的距離為( 。
A、
3
a km
B、a km
C、
2
a km
D、2a km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
sinx
+lgcosx
tanx
的定義域是( 。
A、{x|2kπ≤x≤2kπ+
π
2
,k∈Z}
B、{x|2kπ<x<2kπ+
π
2
,k∈Z}
C、{x|2kπ<x<2kπ+π,k∈Z}
D、{x|2kπ-
π
2
<x<2kπ+
π
2
,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a+x-lnx有兩個零點,則a的范圍為( 。
A、[1,+∞)
B、(1,+∞)
C、(-∞,-1)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={0,1},N={x∈Z|y=
x+1
},則( 。
A、M∩N=∅
B、M∩N={0}
C、M∩N={1}
D、M∩N=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上單調(diào)遞增,設(shè)a=f(3),b=f(
2
),c=f(-2),則a,b,c大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a
y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線
x=1+cosθ
y=sinθ
的中心到直線y=
3
3
x的距離是(  )
A、
1
2
B、
3
2
C、1
D、
3

查看答案和解析>>

同步練習(xí)冊答案