(本題滿分12分)已知、、分別是的三個內(nèi)角、、所對的邊;
(1)若面積,且、、成等差數(shù)列,求、的值;
(2)若,且,試判斷的形狀。
(1)= =;
(2)是等腰直角三角形。
【解析】
試題分析:①利用△ABC面積為,c和內(nèi)角和定理直接求出B,通過余弦定理求出a的值.
②利用正弦定理化簡關(guān)系式,求出角的關(guān)系即可判斷△ABC的形狀.
解:(1)、、成等差數(shù)列,,…………1分
又 …………2分
解得 …………4分
由余弦定理知,
= =………6分
(2)根據(jù)余弦定理,由,得, ,
是直角三角形, …………10分
,=,
故是等腰直角三角形!12分
另法:根據(jù)正弦定理,由,得,又
,…………10分
,=, 故是等腰直角三角形!12分
考點:本試題主要考查了正弦定理、余弦定理、三角形的面積公式的應用,考查計算能力
點評:解決該試題的關(guān)鍵是能將已知中等差數(shù)列得到角B的值,進而結(jié)合面積公式求解a,b的值。
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源:安徽省合肥一中、六中、一六八中學2010-2011學年高二下學期期末聯(lián)考數(shù)學(理 題型:解答題
(本題滿分12分)已知△的三個內(nèi)角、、所對的邊分別為、、.,且.(1)求的大。唬2)若.求.
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學卷 題型:解答題
(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長軸長是短軸長的倍,,是它的左,右焦點.
(1)若,且,,求、的坐標;
(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線(是切點),且使,求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年遼寧省高二上學期10月月考理科數(shù)學卷 題型:解答題
(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量與是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點,分別是左右焦點,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com