(文)如圖,OM∥AB,點(diǎn)P在由射線OM,線段OB及AB的延長線圍成的區(qū)域內(nèi)(不含邊界)運(yùn)動,且,則x的取值范圍是________;當(dāng)時,y的取值范圍是________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年濱州市質(zhì)檢三文) (14分) 如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點(diǎn).
(I)求橢圓的方程;
(II)求m的取值范圍;
(III)求證直線MA、MB與x軸始終圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年湖南卷文)如圖1:OM∥AB,點(diǎn)P由射線OM、線段OB及AB的延長線圍成的陰影區(qū)域內(nèi)(不含邊界).且,則實(shí)數(shù)對(x,y)可以是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(2)若|x1|+|x2|=,求b的最大值;
(3)若x1<x<x2,且x2=a,函數(shù)g(x)=f′(x)-a(x-x1),求證:|g(x)|≤a(3a+2)2.
(文)如圖,N為圓x2+(y-2)2=4上的點(diǎn),OM為直徑,連結(jié)MN并延長交x軸于點(diǎn)C,過C引直線垂直于x軸,且與弦ON的延長線交于點(diǎn)D.
(1)已知點(diǎn)N(,1),求點(diǎn)D的坐標(biāo);
(2)若點(diǎn)N沿著圓周運(yùn)動,求點(diǎn)D的軌跡E的方程;
(3)設(shè)P(0,a)(a>0),Q是點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn),直線l過點(diǎn)P交曲線E于A、B兩點(diǎn),點(diǎn)H在射線QB上,且AH⊥PQ,求證:不論l繞點(diǎn)P怎樣轉(zhuǎn)動,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(海南寧夏卷理22文22)如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A作直線AP垂直直線OM,垂足為P。
(1)證明:OM·OP = OA2;
(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,
且交圓O于B點(diǎn)。過B點(diǎn)的切線交直線ON于K。
證明:∠OKM = 90°。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(海南寧夏卷理22文22)如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A作直線AP垂直直線OM,垂足為P。
(1)證明:OM·OP = OA2;
(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,
且交圓O于B點(diǎn)。過B點(diǎn)的切線交直線ON于K。
證明:∠OKM = 90°。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com