已知
(1)若函數(shù)時(shí)有相同的值域,求b的取值范圍;
(2)若方程在(0,2)上有兩個(gè)不同的根x1、x2,求b的取值范圍,并證明
(1)b的取值范圍為(2)
(1)當(dāng)時(shí),的圖象是開(kāi)口向上對(duì)稱軸為的拋物線,
∴的值域?yàn)?img width=80 height=47 src="http://thumb.zyjl.cn/pic1/1899/sx/94/78094.gif">,∴的值域也為的充要條件
是,
即b的取值范圍為
(2),由分析知
不妨設(shè)
因?yàn)?img width=76 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/102/78102.gif">上是單調(diào)函數(shù),所以在上至多有一個(gè)解.
若,即x1、x??2就是的解,,與題設(shè)矛盾.
因此,由,所以;
由所以
故當(dāng)時(shí),方程上有兩個(gè)解.
由消去b,得 由
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省景德鎮(zhèn)市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知.
(1)若a=0時(shí),求函數(shù)在點(diǎn)(1,)處的切線方程;
(2)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令是否存在實(shí)數(shù)a,當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù) 的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三下學(xué)期數(shù)學(xué)綜合練習(xí)(1) 題型:解答題
(本小題共16分)已知.
(1)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知.
(1)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知.
(1)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com