分析 (1)直三棱柱ABC-A1B1C1中,可得BB1⊥AB,BB1⊥AC,利用AB1=$\sqrt{A{B}^{2}+{B}_{1}{B}^{2}}$,解得AB=$\sqrt{2}$,因此AC2+BC2=AB2,可得AC⊥BC,即可證明:平面AB1C⊥平面B1CB.
(2)BC⊥AC,平面ACC1⊥平面ABC,可得B1C1為三棱錐B1-A1AC的高.可得三棱錐A1-AB1C的體積=$\frac{1}{3}×{B}_{1}{C}_{1}$×${S}_{△{A}_{1}AC}$.
(3)如圖所示,把側(cè)面CBB1C1沿著CC1展開(kāi)與側(cè)面ACC1A1成一個(gè)平面,連接AB1,與CC1的交點(diǎn)取做M,即為CC1的中點(diǎn).設(shè)A1到平面AB1M的距離為h.利用$\frac{1}{3}h$${S}_{△A{B}_{1}M}$=$\frac{1}{3}×{B}_{1}{C}_{1}$×${S}_{△AM{A}_{1}}$,即可得出.
解答 (1)證明:直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,又AB?平面ABC,∴BB1⊥AB,BB1⊥AC,
∴AB1=$\sqrt{A{B}^{2}+{B}_{1}{B}^{2}}$=$\sqrt{A{B}^{2}+1}$=$\sqrt{3}$,解得AB=$\sqrt{2}$.
∴AC2+BC2=AB2,∴∠ACB=90°,即AC⊥BC,
又BC∩BB1=B.
∴AC⊥平面B1CB,又AC?平面AB1C,
∴平面AB1C⊥平面B1CB.
(2)解:∵BC⊥AC,平面ACC1⊥平面ABC,
∴BC⊥平面ACC1,$BC\underset{∥}{=}{B}_{1}{C}_{1}$,即B1C1為三棱錐B1-A1AC的高.
∴三棱錐A1-AB1C的體積=$\frac{1}{3}×{B}_{1}{C}_{1}$×${S}_{△{A}_{1}AC}$=$\frac{1}{3}×1×\frac{1}{2}×1×\sqrt{3}$=$\frac{\sqrt{3}}{6}$.
(3)解:如圖所示,把側(cè)面CBB1C1沿著CC1展開(kāi)與側(cè)面ACC1A1成一個(gè)平面,連接AB1,與CC1的交點(diǎn)取做M,即為CC1的中點(diǎn).
AM=$\sqrt{{1}^{2}+(\frac{\sqrt{3}}{2})^{2}}$=$\frac{\sqrt{7}}{2}$=|B1M|,AB1=$\sqrt{A{B}^{2}+{B}_{1}{B}^{2}}$=2,
∴${S}_{△A{B}_{1}M}$=$\frac{1}{2}×2×\sqrt{(\frac{\sqrt{7}}{2})^{2}-1}$=$\frac{\sqrt{3}}{2}$.
設(shè)A1到平面AB1M的距離為h.
則$\frac{1}{3}h$${S}_{△A{B}_{1}M}$=$\frac{1}{3}×{B}_{1}{C}_{1}$×${S}_{△AM{A}_{1}}$,
∴h=$\frac{1×\frac{1}{2}×1×\sqrt{3}}{\frac{\sqrt{3}}{2}}$=1.
點(diǎn)評(píng) 本題考查了空間位置關(guān)系、空間距離、三棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=±\sqrt{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | y=±4x | D. | y=±$\frac{1}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 長(zhǎng)度相等的兩向量必相等 | B. | 兩向量相等,其長(zhǎng)度不一定相等 | ||
C. | 向量的大小與有向線(xiàn)段的起點(diǎn)無(wú)關(guān) | D. | 向量的大小與有向線(xiàn)段的起點(diǎn)有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com