7.如圖所示,已知二面角α-l-β的平面角為θ,PA⊥α,PB⊥β,A、B為垂足,且PA=4,PB=5,設(shè)A、B到棱l的距離分別為x、y,當(dāng)θ變化時,點(x,y)的軌跡是下列圖形中的( 。
A.B.C.D.

分析 在平面α內(nèi)過A作AM⊥l,垂足為M,連結(jié)BM,分別在Rt△PAM和Rt△PBM中使用勾股定理計算PM即可得出軌跡方程.

解答 解:在平面α內(nèi)過A作AM⊥l,垂足為M,連結(jié)BM,
∵PA⊥α,AM?α,∴PA⊥AM,
∴PM=$\sqrt{P{A}^{2}+A{M}^{2}}$=$\sqrt{16+{x}^{2}}$,
同理PM=$\sqrt{P{B}^{2}+B{M}^{2}}$=$\sqrt{25+{y}^{2}}$,
∴16+x2=25+y2,即x2-y2=9,
又x≥0,y≥0,
∴(x,y)的軌跡是雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{9}=1$在第一象限內(nèi)的部分.
故選:D.

點評 本題考查了線面垂直的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的第一項a1=1,且an+1=$\frac{a_n}{{1+{a_n}}}$,(n=1,2,3,…),試歸納出這個數(shù)列的通項公式( 。
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n+1}$C.an=nD.${a_{n+1}}=\frac{1}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(1,-1),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow$,若△OAB是以點O為直角頂點的等腰直角三角形,則△OAB的面積為(  )
A.2B.4C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某大學(xué)高等數(shù)學(xué)這學(xué)期分別用A,B兩種不同的數(shù)學(xué)方式試驗甲、乙兩個大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:
   
 甲班乙班合計
優(yōu)秀   
不優(yōu)秀   
合計   
(1)學(xué)校規(guī)定:成績不得低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷“能否在犯錯誤率的概率不超過0.025的前提下認為成績優(yōu)異與教學(xué)方式有關(guān)?”
下面臨界值表僅供參考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考方式:${k^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
(2)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過拋物線C:y2=4x的焦點F的直線交拋物線C于A,B兩點,過B與x軸平行的直線和過F與AB垂直的直線交于點N,AN與x軸交于點M,則M的橫坐標的取值范圍為( 。
A.(-∞,0)B.(0,2)C.(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex+$\frac{ax}{x+1}$-1(a∈R且a為常數(shù)).
(1)當(dāng)a=-1時,討論函數(shù)f(x)在(-1,+∞)的單調(diào)性;
(2)設(shè)y=t(x)可求導(dǎo)數(shù),且它的導(dǎo)函數(shù)t′(x)仍可求導(dǎo)數(shù),則t′(x)再次求導(dǎo)所得函數(shù)稱為原函數(shù)y=t(x)的二階函數(shù),記為t′′(x),利用二階導(dǎo)函數(shù)可以判斷一個函數(shù)的凹凸性.一個二階可導(dǎo)的函數(shù)在區(qū)間[a,b]上是凸函數(shù)的充要條件是這個函數(shù)在(a,b)的二階導(dǎo)函數(shù)非負.
若g(x)=(x+1)[f(x)+1]+(a-$\frac{1}{{2}^{{e}^{4}}}$)x2在(-∞,-1)不是凸函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=1nx-$\frac{a(x-1)}{x+1}$.(a∈R)
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若$\frac{(x+1)1nx+2a}{{{{(x+1)}^2}}}<\frac{1nx}{x-1}$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且asinB=$\sqrt{3}$bcosA.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,c-b=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)$g(x)=({-{x^4}-{x^2}})+\frac{1}{{{e^{|x|}}-1}}$,若不等式g(x2)>g(ax)對一切x∈[-1,0)∪(0,1]恒成立,則a的取值范圍是(  )
A.(-∞,-1)∪(1,+∞)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案