在直角梯形ABCD中,AB=2DC=2AD=2,∠DAB=∠ADC =90°,將△DBC沿BD向上折起,使面ABD垂直于面BDC,則C-DAB三棱錐的外接球的體積為­________.

試題分析:設(shè)中點為,球心滿足,設(shè),解三角形可知
,  

點評:要求球的體積,首先要求出半徑,關(guān)鍵是找到球心的位置,依據(jù)球心到4個頂點距離相等及直角三角形斜邊上的中線等于斜邊的一般可確定下球心在過BD中點且垂直于平面ABD的直線上
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),曲線處的切線過點.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直線三棱柱ABC—A1B1C1中,AB=AC=1,∠BAC=90°,異面直線A1B與B1C1所成的角為60°.

(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設(shè)D是BB1的中點,求DC1與平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,空間四邊形的對棱、的角,且,平行于的截面分別交、、、、

(1)求證:四邊形為平行四邊形;
(2)的何處時截面的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


幾何體EFG —ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=l,AE=。

(I)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點M使直線BM與平面BEF所成的角為45°,若存在求等¥ 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點,CD=BD=2AC=2

(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如下圖所示,觀察四個幾何體,其中判斷正確的是(  )
A.①是棱臺B.②是圓臺C.③是棱錐D.④不是棱柱

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列四個命題:
①兩個相交平面有不在同一直線上的三個公交點
②經(jīng)過空間任意三點有且只有一個平面
③過兩平行直線有且只有一個平面
④在空間兩兩相交的三條直線必共面
其中正確命題的序號是               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

圖甲所表示的簡單組合體可由下面某個圖形繞對稱軸旋轉(zhuǎn)而成,這個圖形是(   )

查看答案和解析>>

同步練習冊答案