16.設(shè)函數(shù)f(x)=ex(sinx-cosx)(0≤x≤2016π),則函數(shù)f(x)的各極小值之和為( 。
A.$-\frac{{{e^{2π}}(1-{e^{2016π}})}}{{1-{e^{2π}}}}$B.$-\frac{{{e^{2π}}(1-{e^{1008π}})}}{{1-{e^π}}}$
C.$-\frac{{{e^{2π}}(1-{e^{1008π}})}}{{1-{e^{2π}}}}$D.$-\frac{{{e^{2π}}(1-{e^{2014π}})}}{{1-{e^{2π}}}}$

分析 先求出其導(dǎo)函數(shù),利用導(dǎo)函數(shù)求出其單調(diào)區(qū)間,進(jìn)而找到其極小值f(2kπ+2π)=e2kπ+2π,再利用等比數(shù)列的求和公式來求函數(shù)f(x)的各極小值之和即可.

解答 解:∵函數(shù)f(x)=ex(sinx-cosx),
∴f′(x)=(ex)′(sinx-cosx)+ex(sinx-cosx)′=2exsinx,
∵x∈(2kπ+π,2kπ+2π)時,f′(x)<0,x∈(2kπ+2π,2kπ+3π)時,f′(x)>0,
∴x∈(2kπ+π,2kπ+2π)時原函數(shù)遞減,
x∈(2kπ+2π,2kπ+3π)時,函數(shù)f(x)遞增,
故當(dāng)x=2kπ+2π時,f(x)取極小值,
其極小值為f(2kπ+2π)=e2kπ+2π[sin(2kπ+2π)-cos(2kπ+2π)]
=e2kπ+2π×(0-1)=-e2kπ+2π
又0≤x≤2016π,
∴函數(shù)f(x)的各極小值之和S=-e-e-e-…-e2012π-e2014π-e2016π
=$\frac{-{e}^{2π}[1-({e}^{2π})^{1008}]}{1-{e}^{2π}}$=-$\frac{{e}^{2π}(1-{e}^{2016π})}{1-{e}^{2π}}$.
故選:A.

點(diǎn)評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值以及等比數(shù)列的求和.利用導(dǎo)數(shù)求得當(dāng)x=2kπ+2π時,f(x)取極小值是解題的關(guān)鍵,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值是教學(xué)中的重點(diǎn)和難點(diǎn),學(xué)生應(yīng)熟練掌握,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-5x+4≤0},B={x|x2-7x+10≤0},C={x|x≤a}.
(1)在集合A中任取一個元素x,求事件“x∈A∩B”的概率;
(2)命題p:x∈A,命題q:x∈C,若q是p的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+3|-m,m>0,f(x-3)≥0的解集為(-∞,-2]∪[2,+∞).
(Ⅰ)求m的值;
(Ⅱ)若?x∈R,使得$f(x)≥|{2x-1}|-{t^2}+\frac{3}{2}t+1$成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)等比數(shù)列{an}的前n項和為Sn,若S3=9,S6=27,則S9=(  )
A.81B.72C.63D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=sin(ax+\frac{π}{3})(a>0)$圖象相鄰兩對稱軸間的距離為4,則a的值是(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,屋頂?shù)臄嗝鎴D是等腰三角形ABC,其中AB=BC,橫梁AC的長為定值2l,試問:當(dāng)屋頂面的傾斜角α為多大時,雨水從屋頂(頂面為光滑斜面)上流下所需A的時間最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=ax2+b(lnx-x),g(x)=-$\frac{1}{2}x$2+(1-b)x,已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)f(x)的極值點(diǎn);
(Ⅲ)若對于任意b∈(1,+∞),總存在x1,x2∈[1,b],使得f(x1)-f(x2)-1>g(x1)-g(x2)+m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知{an}是各項均為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,b2+b3=2a2,a3-3b2=2.
(1)求{an}和{bn}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,數(shù)列{bn}的前n項和為Tn,求Sn和Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知方程ln|x|-ax2+$\frac{3}{2}$=0有4個不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.$({0,\frac{e^2}{2}})$B.$({0,\frac{e^2}{2}}]$C.$({0,\frac{e^2}{3}})$D.$({0,\frac{e^2}{3}}]$

查看答案和解析>>

同步練習(xí)冊答案