在平面幾何中,若DE是△ABC中平行于BC的中位線,則有S△ADE:S△ABC=1:4.把這個(gè)結(jié)論類(lèi)比到空間:若三棱錐A-BCD有中截面EFG∥平面BCD,則VA-EFG:VA-BCD=
 
考點(diǎn):類(lèi)比推理
專(zhuān)題:規(guī)律型,推理和證明
分析:在由平面圖形到空間圖形的類(lèi)比推理中,一般是由點(diǎn)的性質(zhì)類(lèi)比推理到線的性質(zhì),由線的性質(zhì)類(lèi)比推理到面的性質(zhì),由面積的性質(zhì)類(lèi)比推理到體積的性質(zhì),由已知“若DE是△ABC的中位線,則有S△ADE:S△ABC=1:4”我們可以類(lèi)比這一性質(zhì),推理出若三棱錐A-BCD中,有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關(guān)系式.
解答: 解:由:△ABC中,若DE是△ABC的中位線,則有S△ADE:S△ABC=1:4;
我們可以根據(jù)由面積的性質(zhì)類(lèi)比推理到體積的性質(zhì),類(lèi)比這一性質(zhì),推理出:
若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關(guān)系式為
VA-EFG:VA-BCD=1:8
故答案為:1:8.
點(diǎn)評(píng):類(lèi)比推理的一般步驟是:(1)找出兩類(lèi)事物之間的相似性或一致性;(2)用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)+m(A>0,ω>0,|φ|<
π
2
)的最大值為4,最小值為0,兩條對(duì)稱(chēng)軸間的距離為
π
2
,直線x=
π
6
是其圖象的一條對(duì)稱(chēng)軸,則符合條件的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是定義在R上的增函數(shù),且y=f(x)的圖象關(guān)于點(diǎn)(6,0)對(duì)稱(chēng).若實(shí)數(shù)x,y滿(mǎn)足不等式
f(x2-6x)+f(y2-8y+36)≤0,則x2+y2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=4x-2x+1+2的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知E,F(xiàn),M,N分別是棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的棱AB、BC、
CC1、A1B1的中點(diǎn),則三棱錐N-EFM的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若z=1+i,則|z•
.
z
-z-1|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知tanA=
1
4
,tanB=
3
5
,且△ABC最大邊的長(zhǎng)為
17
,則△ABC最小邊的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間四面體O-ABC,點(diǎn)P滿(mǎn)足
OP
=
1
6
OA
+
1
3
OB
+
1
2
OC
,記四面體O-ABP、O-BCP、O-ACP的體積依次為V1,V2,V3,則V1:V2:V3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某流程圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù)
①f(x)=x2
②f(x)=
1
x

③f(x)=lnx+2x-6  
④f(x)=ln(
x2+1
+x)
則可以輸出的函數(shù)的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案