正方體ABCD-A1B1C1D1的棱上到異面直線AB,CC1的距離相等的點的個數(shù)為( )
A.2
B.3
C.4
D.5
【答案】分析:畫出正方體,結(jié)合正方體中線面、線線垂直,先找定點、再找棱的中點,找出符合條件的所有的點.
解答:解:如圖:正方體ABCD-A1B1C1D1,E、F分別是BC和A1D1的中點,連接AF和FC1,

根據(jù)正方體的性質(zhì)知,BB1⊥AB,C1C⊥B1C1,故B1到異面直線AB,CC1的距離相等,
同理可得,D到異面直線AB,CC1的距離相等,
又有AB⊥BC,C1C⊥BC,故E到異面直線AB,CC1的距離相等,
F 為A1D1的中點,易計算FA=FC1,故F到異面直線AB,CC1的距離相等,共有4個點.
故選C.
點評:本題考查了正方體體的結(jié)構(gòu)特征,考查了線面、線線垂直定理的應用,利用異面直線之間距離的定義進行判斷,考查了觀察能力和空間想象能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內(nèi);(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值( 。

查看答案和解析>>

同步練習冊答案