設(shè), 已知函數(shù)
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)處的切線相互平行, 且 證明.
見解析
【解析】(Ⅰ)證明:設(shè)函數(shù),,
①,因為,所以當(dāng)時,,
所以函數(shù)在區(qū)間(-1,0)內(nèi)單調(diào)遞減;
②,因為,所以當(dāng)時,
;當(dāng)時,,即函數(shù)在區(qū)間(0,1)內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增.
綜合①②及,可知函數(shù)在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增.
(Ⅱ)證明:由(Ⅰ)知,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間
內(nèi)單調(diào)遞增.因為曲線在點(diǎn)處的切線相互平行,從而互不相等,且.不妨設(shè),
由==,可得,
解得,從而,
設(shè),則,
由=,解得,所以,
設(shè),則,因為,所以,
故=,即.
本題第(Ⅰ)問,可以分兩段來證明,都是通過導(dǎo)數(shù)的正負(fù)來判斷單調(diào)性;第(Ⅱ)問,由切線平行知,切線的斜率相等,然后構(gòu)造函數(shù)解決.判斷分段函數(shù)的單調(diào)性時,要分段判斷;證明不等式時,一般構(gòu)造函數(shù)解決.
【考點(diǎn)定位】本小題主要考查導(dǎo)數(shù)的運(yùn)算及其幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想、化歸思想、函數(shù)思想,考查綜合分析問題和解決問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2002年全國各省市高考模擬試題匯編 題型:044
已知函數(shù)y=(n∈N).
(Ⅰ)當(dāng)n=1,2,3…時,把已知函數(shù)的圖像和直線y=1的交點(diǎn)的橫坐標(biāo)依次記為<1;
(Ⅱ)對于每一個n的值,設(shè)為已知函數(shù)的圖像上與x軸距離為1的兩點(diǎn),求證:n取任意一個正整數(shù)時,以為直徑的圓都與一條定直線相切,并求出這條定直線的方程和切點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省聯(lián)盟高三第一次聯(lián)考數(shù)學(xué)文卷 題型:選擇題
設(shè),已知函數(shù)的定義域是,值域是,若函數(shù)
g(x)=2︱x-1︱+m+1有唯一的零點(diǎn),則( )
A.2 B. C.1 D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè),已知函數(shù)的導(dǎo)函數(shù)為奇函數(shù),若曲線的一條切線的斜率是,則切點(diǎn)的橫坐標(biāo)為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè),已知函數(shù)的定義域是,值域是,若函數(shù)g(x)=2︱x-1︱+m+1有唯一的零點(diǎn),則( )
A.2 B. C.1 D.0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com