直線L經(jīng)過點P(1,2),且被兩直線L1:3x-y+2=0和 L2:x-2y+1=0截得的線段AB中點恰好是點P,求直線L的方程.
考點:直線的點斜式方程
專題:直線與圓
分析:設(shè)A(a,b),則B(2-a,4-b),由A、B分別在L1、L2上,解得:a=
1
5
,b=
13
5
,由此能求出直線L的方程.
解答: 解:設(shè)A(a,b),
∵P(1,2)是AB中點,∴B(2-a,4-b),
又∵A、B分別在L1、L2上,
∴方程組
3a-b+2=0
(2-a)-2(4-b)+1=0

解得:a=
1
5
,b=
13
5
,
kAP=-
3
4
,直線L方程為y-2=-
3
4
(x-1)

整理,得3x+4y-11=0.
點評:本題考查直線方程的求法,是基礎(chǔ)題,解題時要認真審題,注意中點坐標公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若中心在坐標原點,對稱軸為坐標軸的橢圓經(jīng)過點(4,0),離心率為
3
2
,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我省某房地產(chǎn)開發(fā)商用2016萬元購得一塊商業(yè)用地,計劃在此地上建造一棟至少6層、每層2016平方米的樓房.經(jīng)測算,如果將樓房建造x層,則每平方米的平均建造費用為(2016+100x)元,為了使樓房每平方米平均的綜合費用最小,此樓房應建造多少層?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(sin
1
2
x,1),
n
=(4
3
cos
1
2
x,2cosx),設(shè)函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)f(x),x∈[-π,π]的單調(diào)遞增區(qū)間.
(3)設(shè)函數(shù)h(x)=f(x)-k(k∈R)在區(qū)間[-π,π]上的零點的個數(shù)為n,試探求n的值及對應的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(1)若x=
π
6
,求向量
a
c
的夾角;
(2)當x∈[
π
2
,
8
]時,求函數(shù)f(x)=2
a
b
+1的最大值,并求此時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-n,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求證:
n-1
2
a1
a2
+
a2
a3
+…+
an
an+1
n
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知角A,B,C的對邊分別為a,b,c且
a-c
b-c
=
sinB
sinA+sinC

(1)求A;
(2)求函數(shù)y=2sin2B+cos(
π
3
-2B)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD丄CD,AB∥CD,AB=AD=
1
2
CD=2,點M在線段EC上.
(Ⅰ)當點M為EC中點時,求證:BM∥平面ADEF;
(Ⅱ)求證:平面BDE丄平面BEC;
(Ⅲ)若平面BDM與平面ABF所成二面角為銳角,且該二面角的余弦值為
6
6
時,求三棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
4x
x2+1
,x∈[-2,2]
的最大值是
 
,最小值是
 

查看答案和解析>>

同步練習冊答案