(本小題滿分12分)

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AB∥CD,BA⊥AD,且CD=2AB.

(1)若AB=AD=,直線PB與CD所成角為,

①求四棱錐P-ABCD的體積;

②求二面角P-CD-B的大。

(2)若E為線段PC上一點(diǎn),試確定E點(diǎn)的位置,使得平面EBD垂直于平面ABCD,并說明理由.

 

【答案】

(1)(1)VP-ABCD=·PA·SABCD=a3.(2)二面角P-CD-B為450

(2) 當(dāng)點(diǎn)E在線段PC上,且滿足PE :EC=2 :1時(shí),平面EBD垂直于平面ABCD.見解析。

【解析】

試題分析:

(1)∵AB∥CD,∴∠PBA是PB與CD所成角,

從而可以得到VP-ABCD=·PA·SABCD=a3,又因?yàn)?∵AB⊥AD,CD∥AB∴CD⊥AD

又PA⊥底面ABCD∴∠PDA是二面角P-CD-B的平面角,進(jìn)而解得。

 (2) 當(dāng)點(diǎn)E在線段PC上,且滿足PE :EC=2 :1時(shí),平面EBD垂直于平面ABCD.

結(jié)合猜想,運(yùn)用面面垂直判定定理得到。

(1)∵AB∥CD,∴∠PBA是PB與CD所成角,

即∠PBA=450 , ∴在直角△PAB中,PA=AB=a 

(1)VP-ABCD=·PA·SABCD=a3

(2)∵AB⊥AD,CD∥AB

 ∴CD⊥AD

又PA⊥底面ABCD

∴PA⊥CD

∴CD⊥平面PAD

∴CD⊥PD

∴∠PDA是二面角P-CD-B的平面角

在直角△PDA中,∵PA=AD=a

∴∠PDA=450

即二面角P-CD-B為450

(2) 當(dāng)點(diǎn)E在線段PC上,且滿足PE :EC=2 :1時(shí),平面EBD垂直于平面ABCD.

理由如下:連AC、BD交于O點(diǎn),連EO.

由△AOB∽△COD,且CD=2AB

∴CO=2AO

∴PE:EC=AO:CO =1:2

∴PA∥EO 

∵PA⊥底面ABCD,

∴EO⊥底面ABCD.

又EO在平面EBD內(nèi),

∴平面EBD垂直于平面ABCD  

考點(diǎn):本題主要考查了空間中體積和二面角的求解,以及面面垂直的證明的綜合運(yùn)用。

點(diǎn)評:解決該試題的關(guān)鍵熟練掌握幾何體的結(jié)構(gòu)特征,進(jìn)而得到空間中點(diǎn)、線、面的位置關(guān)系,結(jié)合有關(guān)定理進(jìn)行證明即可,并且也有利于建立空間之間坐標(biāo)系,利用向量的有關(guān)知識(shí)解決空間角與空間距離等問題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案