設(shè)函數(shù)f(x)的定義域是R,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)f(n),

且當(dāng)x>0時(shí),0<f(x)<1.

(1)求證:f(0)=1,且當(dāng)x<0時(shí),有f(x)>1;

(2)判斷f(x)在R上的單調(diào)性;

(3)設(shè)集合A={(x,y)|f(x2)f(y2)>f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范圍.

答案:
解析:

  解:(1)f(m+n)=f(m)f(n),令m=1,n=0,則f(1)=f(1)f(0),且由x>0時(shí),0<f(x)<1,∴f(0)=1;設(shè)m=x<0,n=-x>0,∴f(0)=f(x)f(-x),∴f(x)=>1.

  (2)設(shè)x1x2,則x2x1>0,∴0<f(x2x1)<1,∴f(x2)-f(x1)=f[(x2x1)+x1]-f(x1)=f(x2x1)f(x1)-f(x1)=f(x1)[f(x2x1)-1]<0,∴f(x)在R上單調(diào)遞減.

  (3)∵f(x2)f(y2)>f(1),∴f(x2y2)>f(1),由f(x)單調(diào)性知x2y2<1,又f(axy+2)=1=f(0),

  ∴axy+2=0,又A∩B=,∴,∴a2+1≤4,從而


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年?yáng)|城區(qū)示范校質(zhì)檢一理)(14分)

設(shè)函數(shù)f(x)是定義在上的奇函數(shù),當(dāng)時(shí), (a為實(shí)數(shù)).

   (Ⅰ)求當(dāng)時(shí),f(x)的解析式;

   (Ⅱ)若上是增函數(shù),求a的取值范圍;

   (Ⅲ)是否存在a,使得當(dāng)時(shí),f(x)有最大值-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lgx,則滿(mǎn)足f(x)>0的x的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),并且f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),有f(x)=x,則f(3.5)=____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則f()=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(上海卷) 題型:填空題

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lg x,則滿(mǎn)足f(x)>0

x的取值范圍是                  .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案