等差數(shù)列的和1+3+5+…+(4n+1)等于


  1. A.
    n(2n+1)
  2. B.
    (2n-1)
  3. C.
    (n+2)(2n+1)
  4. D.
    (2n+1)2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•湖北)已知等差數(shù)列{an}前三項的和為-3,前三項的積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}前三項的和為-3,前三項的積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{an}的前n項和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕尾二模)設等比數(shù)列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N*)
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列(如:在a1與a2之間插入1個數(shù)構成第一個等差數(shù)列,其公差為d1;在a2與a3之間插入2個數(shù)構成第二個等差數(shù)列,其公差為d2,…以此類推),設第n個等差數(shù)列的和是An.是否存在一個關于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數(shù)列d1,d2,d3,…,dn,…,這個數(shù)列中是否存在不同的三項dm,dk,dp(其中正整數(shù)m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}前三項的和為-3,前三項的積為8.
(1)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項和.
(2)若a2,a3,a1不成等比數(shù)列,求數(shù)列{
1anan+1
}的前n項和.

查看答案和解析>>

同步練習冊答案