14.若圓x2+y2-12x+16=0與直線y=kx交于不同的兩點(diǎn),則實(shí)數(shù)k的取值范圍為( 。
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-$\sqrt{5}$,$\sqrt{5}$)C.(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)

分析 求出圓的圓心與半徑,利用點(diǎn)到直線的距離公式列出不等式求解即可.

解答 解:圓x2+y2-12x+16=0的圓心(6,0),半徑為2$\sqrt{5}$,
圓x2+y2-12x+16=0與直線y=kx交于不同的兩點(diǎn),
可得$\frac{|6k|}{\sqrt{1+{k}^{2}}}$<2$\sqrt{5}$,
解得k∈(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$).
故選:C.

點(diǎn)評 本題考查直線與圓的位置關(guān)系的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查.抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42人.
(1)在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值;
(2)在地理成績及格的學(xué)生中,已知a≥10,b≥7,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖的程序框圖,如果輸入的a=6,b=4,那么輸出的s的值為(  )
A.17B.22C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知圓E:x2+y2-2x=0,若A為直線l:x+y+m=0上的點(diǎn),過點(diǎn)A可作兩條直線與圓E分別切于點(diǎn)B,C,且△ABC為正三角形,則實(shí)數(shù)m的取值范圍是[-2$\sqrt{2}-1$,2$\sqrt{2}-1$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知正六邊形ABCDEF的邊長為1,則$\overrightarrow{AF}$•$\overrightarrow{BD}$的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z滿足(2+i)z=2-i(i為虛數(shù)單位),則z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”是“l(fā)og2a>log2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=alog2(|x|+4)+x2+a2-8有唯一的零點(diǎn),則實(shí)數(shù)a的值是( 。
A.-4B.2C.±2D.-4或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知曲線C:y=x2+2x在點(diǎn)(0,0)處的切線為l,則由C,l以及直線x=1圍成的區(qū)域面積等于$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案